Truth discovery in crowdsourced detection of spatial events

Robin Wentao Ouyang
Mani Srivastava
Alice Toniolo
Timothy J. Norman
Mobile crowdsourced event detection

- Potholes, graffiti, bike racks, flora, …
Truth discovery

• Given crowdsourced detection reports with time and loc tags, find which reported events are true and which are false
Challenges

• Detection reports are non-conflicting

• Uncertainty in both participants’ reliability and mobility
 ▫ Missing reports are ambiguous

• Supervision is difficult
Possible solutions

<table>
<thead>
<tr>
<th></th>
<th>l_1</th>
<th>l_2</th>
<th>l_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>u_2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>u_3</td>
<td>1</td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>u_4</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>u_5</td>
<td>-1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

(a) Location tracking

<table>
<thead>
<tr>
<th></th>
<th>l_1</th>
<th>l_2</th>
<th>l_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>u_2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>u_3</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>u_4</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>u_5</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

(b) Ignoring missing

<table>
<thead>
<tr>
<th></th>
<th>l_1</th>
<th>l_2</th>
<th>l_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>u_2</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>u_3</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>u_4</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>u_5</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

(c) Missing as neg.

- **Severe privacy and energy issues**
- **Trivial conclusion**
- **Performance degradation**
Problem

Can we design an algorithm that can reliably discover true events in mobile crowdsourced event detection but \textit{without location tracking} and \textit{supervision}?
Proposed model

- **Graphical model**
- **A participant’s likelihood of reporting an event depends on**
 - 1) whether the participant visited the event location
 - 2) whether the event at that location is true or false
 - 3) how reliable the participant is
Proposed model

• Location popularity
 ▫ For each event at location l_j
 • Draw the location’s popularity
 \[g_j \sim \text{Beta}(\lambda_{g_j,1}, \lambda_{g_j,0}) \]
Proposed model

• Participants Location visit indicators
 ▫ For participant \(u_i \) and event at location \(l_j \)
 • Draw a location visit indicator \(h_{i,j} \sim \text{Bernoulli}(g_j) \)

• A participant has a higher chance to visit more popular locations
Proposed model

- Event label
 - For each event at location l_j
 - Draw the event’s prior truth probability $s \sim \text{Beta}(\lambda_s, 1, \lambda_s, 0)$
 - Draw the event’s label $z_j \sim \text{Bernoulli}(s)$
Proposed model

- Three-way participant reliability
 - For each participant u_i
 - Draw her true positive rate while present (TPR)
 \[a_i \sim \text{Beta}(\lambda_{a_i,1}, \lambda_{a_i,0}) \]
 - Draw her false positive rate while present (FPR)
 \[b_i \sim \text{Beta}(\lambda_{b_i,1}, \lambda_{b_i,0}) \]
 - Draw her reporting rate while absent (RRA)
 \[c_i \sim \text{Beta}(\lambda_{c_i,1}, \lambda_{c_i,0}) \]

- Concerns
 - A participant’s reliability depends on: whether she visited the event location and whether the event there is true or false
 - A participant’s TPR and FPR may be asymmetric (reliable vs. conservative participants)
 - A participant must conform to physical constraints (RRA)
Proposed model

• Reports (detection = 1, missing = 0)
 ▫ For participant \(u_i \) and event at location \(l_j \):
 - If \(h_{i,j} = 1 \) and \(z_j = 1 \), draw \(x_{i,j} \sim \text{Bernoulli}(a_i) \)
 - If \(h_{i,j} = 1 \) and \(z_j = 0 \), draw \(x_{i,j} \sim \text{Bernoulli}(b_i) \)
 - If \(h_{i,j} = 0 \), draw \(x_{i,j} \sim \text{Bernoulli}(c_i) \)
Analysis

1) Missing reports are well explained

\[p(x_{i,j} = 0) = \sum_{k=0}^{1} \sum_{q=0}^{1} p(h_{i,j} = k)p(z_j = q)p(x_{i,j} = 0|h_{i,j} = k, z_j = q) \]

\[= (1 - g_j)(1 - c_i) + g_j[(1 - s)(1 - b_i) + s(1 - a_i)]. \]

When location popularity \(g_j \rightarrow 1 \), we have

\[p(x_{i,j} = 0) \rightarrow (1 - s)(1 - b_i) + s(1 - a_i) \]

When location popularity \(g_j \rightarrow 0 \), we have

\[p(x_{i,j} = 0) \rightarrow 1 - c_i \]
Analysis

2) Location tracking is avoided.
 ▫ Location popularity is a collective rather than a personal measure.
 ▫ Its prior counts need to be estimated only once.
 ▫ It can be jointly learned with other parameters from data.

3) Different aspects of participant reliability are handled.

4) Prior belief can be easily incorporated.
Experiments

• Methods in comparison
 ▫ MV (majority voting)
 ▫ TF (truth finder [1])
 ▫ GLAD (generative model of labels, abilities, and difficulties [2])
 ▫ LTM (latent truth model [3])
 ▫ EM (expectation maximization [4])
 ▫ TSE (truth finder for spatial events) – proposed

Experiments

- Traffic light detection
- A mobility dataset containing time-stamped GPS location traces for 536 taxicabs in SF
 - Spatial area of interest 3.5km x 4.4km – further divided into two subareas
 - Temporal span 25 days
- Detection reports
 - A participant waits for 15-120 seconds
Experiments

- Traffic light detection

<table>
<thead>
<tr>
<th></th>
<th>Area 1</th>
<th></th>
<th></th>
<th>Area 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>pre</td>
<td>rec</td>
<td></td>
<td>pre</td>
<td>rec</td>
</tr>
<tr>
<td>MV</td>
<td></td>
<td>1.000</td>
<td>0.098</td>
<td>0.179</td>
<td>1.000</td>
<td>0.167</td>
</tr>
<tr>
<td>TF</td>
<td></td>
<td>1.000</td>
<td>0.098</td>
<td>0.179</td>
<td>1.000</td>
<td>0.167</td>
</tr>
<tr>
<td>GLAD</td>
<td></td>
<td>1.000</td>
<td>0.098</td>
<td>0.179</td>
<td>1.000</td>
<td>0.167</td>
</tr>
<tr>
<td>LTM</td>
<td></td>
<td>0.960</td>
<td>0.423</td>
<td>0.587</td>
<td>1.000</td>
<td>0.398</td>
</tr>
<tr>
<td>EM</td>
<td></td>
<td>0.956</td>
<td>0.431</td>
<td>0.594</td>
<td>1.000</td>
<td>0.404</td>
</tr>
<tr>
<td>TSE</td>
<td></td>
<td>0.970</td>
<td>0.895</td>
<td>0.931</td>
<td>0.995</td>
<td>0.794</td>
</tr>
</tbody>
</table>

F1 scores for traffic light detection experiments.
Experiments

- Traffic light detection (Area 2)

(a) F1 versus M
(b) F1 versus N
Experiments

- Image-based event detection

<table>
<thead>
<tr>
<th></th>
<th>Bike rack \mathcal{B}_M</th>
<th>Restaurant \mathcal{C}_M</th>
<th>Plant \mathcal{P}_M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pre rec $F1$</td>
<td>pre rec $F1$</td>
<td>pre rec $F1$</td>
</tr>
<tr>
<td>MV</td>
<td>1.000 0.468 0.638</td>
<td>0.836 0.468 0.600</td>
<td>0.908 0.488 0.602</td>
</tr>
<tr>
<td>TF</td>
<td>1.000 0.493 0.661</td>
<td>0.836 0.468 0.600</td>
<td>0.908 0.488 0.602</td>
</tr>
<tr>
<td>GLAD</td>
<td>1.000 0.545 0.706</td>
<td>0.954 0.463 0.623</td>
<td>1.000 0.510 0.675</td>
</tr>
<tr>
<td>LTM</td>
<td>0.954 0.630 0.758</td>
<td>0.921 0.569 0.704</td>
<td>0.983 0.550 0.677</td>
</tr>
<tr>
<td>EM</td>
<td>0.955 0.636 0.763</td>
<td>0.917 0.568 0.702</td>
<td>0.973 0.583 0.685</td>
</tr>
<tr>
<td>TSE</td>
<td>0.963 0.874 0.916</td>
<td>0.916 0.708 0.799</td>
<td>0.865 0.671 0.756</td>
</tr>
</tbody>
</table>
Experiments

- Simulation (F1 score on event labels)
Experiments

- Simulation (MAE on TPRs a and FPRs b)
Discussion

- Sequential mobility modeling
- Dependent sources
- Cross-domain truth discovery
Conclusion

• Our proposed model integrates location popularity, location visit indicators, truth of events and three-way participant reliability in a unified framework.

• It can efficiently handling both unknown participants’ reliability and mobility.

• It can efficiently discover true events in mobile crowdsourced event detection without any supervision and location tracking.
Q & A

Thank you!