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ABSTRACT
We consider learning query and document similarities from a click-
through bipartite graph with metadata on the nodes. The metada-
ta contains multiple types of features of queries and documents.
We aim to leverage both the click-through bipartite graph and the
features to learn query-document, document-document, and query-
query similarities. The challenges include how to model and learn
the similarity functions based on the graph data.

We propose solving the problems in a principled way. Specifi-
cally, we use two different linear mappings to project the queries
and documents in two different feature spaces into the same latent
space, and take the dot product in the latent space as their similar-
ity. Query-query and document-document similarities can also be
naturally defined as dot products in the latent space. We formalize
the learning of similarity functions as learning of the mappings that
maximize the similarities of the observed query-document pairs on
the enriched click-through bipartite graph. When queries and doc-
uments have multiple types of features, the similarity function is
defined as a linear combination of multiple similarity functions,
each based on one type of features. We further solve the learn-
ing problem by using a new technique called Multi-view Partial
Least Squares (M-PLS). The advantages include the global opti-
mum which can be obtained through Singular Value Decomposi-
tion (SVD) and the capability of finding high quality similar queries.
We conducted large scale experiments on enterprise search data and
web search data. The experimental results on relevance ranking and
similar query finding demonstrate that the proposed method works
significantly better than the baseline methods.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Retrieval models
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1. INTRODUCTION
Many tasks in Information Retrieval (IR) rely on similarities be-

tween pairs of objects. In relevance ranking, given a query, one re-
trieves the most relevant documents and ranks them based on their
degrees of relevance to the query. The relevance between a query
and a document can be viewed as a kind of similarity. In query re-
formulation or rewriting, queries that convey similar search intents
but in different forms are created to reformulate the original query,
so that the documents better meeting the users’ information need
can be properly retrieved and ranked. The original query and re-
formulated queries are in fact similar queries. In query suggestion,
queries with related intents are recommended to the user, to help
the user to search other useful information. Those queries are also
similar queries. In all these tasks, we need to measure similarities
between two objects, either query-document or query-query.

Similarity functions are usually defined based on the features of
queries and documents. The relevance models in IR, including Vec-
tor Space Model (VSM) [24], BM25 [20], and Language Models
for Information Retrieval (LMIR) [19, 37] can all be viewed as sim-
ilarity functions between query and document feature vectors [35,
33]. Similarity between a query and a document is calculated as
similarity between term frequency vectors or n-gram vectors. Sim-
ilarly, queries are represented as vectors in a term space or n-gram
space, and the dot product or cosine is taken as a similarity function
between them [38, 36]. All the methods utilize features to calculate
similarity functions and we call them feature based methods.

Recently, mining query and document similarities from a click-
through bipartite graph has been proposed (cf., [7, 18]). The click-
through bipartite graph, which represents users’ implicit judgments
on query-query, document-document, and query-document relevance
relations, has been proved to be a valuable source for measuring
the similarities. For example, queries which share many co-clicked
documents may represent similar search intents, and they can be
viewed as similar queries [4, 31]1. These methods only rely on the
structure of a bipartite graph. We call them graph based methods.

In this paper, we consider leveraging information from both a
click-through bipartite graph and features to measure query and
document similarities. In other words, this is about how to com-
bine the feature based methods and graph based methods. As far
as we know, this problem was not well studied previously. We
formalize the issue as that of learning query and document simi-
larities from a click-through bipartite graph with metadata on the

1In this paper query similarity and document similarity are defined
from the viewpoint search intents.



Figure 1: Click-through bipartite graph with metadata on n-
odes, representing queries and documents in feature spaces and
their associations.

nodes representing multiple types of features. The features may
come from multiple sources. For example, for queries, the content,
the semantic classes, and the user information can be defined as
features; for documents, features can be extracted from the URLs,
titles, bodies, and anchor texts. Formally, we assume that there is
a query-document bipartite graph. The bipartite graph consists of
triplets (q,d,t), where q denotes a query, d denotes a document, and
t denotes the number of clicks between q and d. Besides, we as-
sume that the queries and documents on the graph have multiple
types of features. For each type i (i > 1), queries and documents
are represented as vectors in the query space Qi and the document
space Di. Qi and Di are subspaces of the Euclidian spaces Rsqi

and Rsdi , where sqi and sdi represent the dimensionalities of the Eu-
clidean spaces. Qi andDi may or may not be the same space, which
means that queries and documents may be either homogeneous or
heterogeneous data. Figure 1 illustrates the relationships.

Our goal is to accurately and efficiently learn the similarity func-
tions from the enriched click-through bipartite graph. There are
several challenges: 1) how to model the similarity functions based
on the complicated graph data, particularly when there are multiple
types of features; 2) how to accurately learn the similarity func-
tions; 3) how to efficiently perform the learning task. We propose a
method that solves all the problems in a theoretically sound way.

1) Specifically, for each type of features, we use two linear map-
pings to project the query vectors in the query space and the doc-
ument vectors in the document space into the same latent space.
We take the dot product of the images in the latent space as the
similarity function between the query and document vectors. Fig-
ure 2 illustrates the method. The dot product in the latent space is
also taken as the similarity function between query and query and
the similarity function between document and document. The two
mappings are supposed to be different, because of the difference
between the query space and document space. The final similarity
functions are defined as linear combinations of similarity functions
from different feature types.

2) We learn the mappings and combination weights using the en-
riched click-through bipartite graph data. The number of clicks be-
tween queries and documents indicates similarities between queries
and documents. We formalize the learning method as an optimiza-
tion problem, in which the objective is to maximize the similarities
of the observed query-document pairs on the click-through bipar-
tite graph. We regularize the combination weights with ℓ2 norm
and we make orthogonal assumptions on the mappings. We pro-
pose a new machine learning technique called Multi-view Partial
Least Squares (M-PLS) to learn the linear mappings. M-PLS ex-
tends the Partial Least Squares (PLS) technique to a multi-view
learning method (multiple feature types). When there is only one

type of features (one view), M-PLS degenerates to the conventional
PLS. Moreover, if there is no metadata used, then M-PLS becomes
equivalent to Latent Semantic Indexing (LSI) and thus our method
can also be regarded as an extension of LSI. We prove that although
the optimization problem is not convex, the globally optimal solu-
tion of M-PLS can be easily obtained. We also conduct theoretical
analysis on the method, and point out that it has two properties that
enable the method to capture query-query similarity well (this is
also true for document-document similarity), although the learning
of it is not explicitly incorporated into the formulation.

3) The learning task can be efficiently performed through Sin-
gular Value Decomposition (SVD). First, we employ the power
method to build an SVD solver. After that, we solve a simple
quadratic program to learn the optimal combination weights. We
show that the quadratic program has a closed-form solution.

The learned similarity functions can be applied to relevance rank-
ing and similar query finding. In relevance ranking, the query-
document similarity function can be directly used as a model for
retrieval and ranking. In addition, it can also be used as a feature
of a learning to rank model. In similar query finding, the similar
queries found with the query-query similarity function can be uti-
lized in tasks such as query suggestion and query reformulation.

We conducted experiments on large scale enterprise search data
and web search data. The results on relevance ranking and similar
query finding show that our method significantly outperforms the
baseline methods. Specifically, in relevance ranking, we compare
our method with the state of the art feature based methods such as
BM25, graph based methods such as random walk and their linear
combinations. Our method not only significantly outperforms the
feature based methods and graph based methods, but also signif-
icantly performs better than their linear combinations. In similar
query finding, we use examples to demonstrate the capability of
our method on finding high quality similar queries. When com-
pared with the baseline methods such as random walk and cosine
similarity, our method significantly outperforms the feature based
methods and graph based methods, and is comparable with the best
linear combination. Particularly, we find our method performs bet-
ter than the baselines on tail queries, and the results also strongly
support the conclusion of our theoretical analysis.

Our contributions in this paper include: 1) proposal of learning
query and document similarities from an enriched click-through bi-
partite graph; 2) proposal of a new learning method called M-PLS
to perform the learning task; 3) theoretical proof of the properties
of the proposed method and empirical demonstration of the effec-
tiveness of the method.

The rest of the paper is organized as follows: in Section 2, we
conduct a survey on related work. Then, we define the similarity
learning problem in Section 3. After that, we explain our method
based on M-PLS in Section 4. Experimental results are reported
in Section 5, and Section 6 concludes the paper and provides some
future research directions.

2. RELATED WORK
Partial Least Squares (PLS) [21] refers to a class of algorithms

in statistics that aims to model the relations between two or more
sets of data by projecting them into a latent space. The underlying
idea of PLS algorithms is to model collinearity between different
data sets. Since the first work by Wold [32], many variants of PLS
have been developed and applied into many tasks such as regression
[27], classification [3] and dimension reduction [26]. In practice,
PLS has been successfully applied in chemometrics [21], biomet-
rics [6], computer vision [26] and graph mining [23]. In this paper,
we extend PLS to M-PLS and employ M-PLS in web search. If



Figure 2: Projecting queries and documents from the query
space and document space into a latent space using two linear
mappings LQi and LDi . The dot product in the latent space is
taken as the similarity function.

there is only one type of features in the query space as well as in
the document space, our similarity learning problem degenerates to
a problem which can be directly solved by PLS.

Canonical Correlation Analysis (CCA) [13] or its kernelized ver-
sion KCCA [11, 12] is an alternative method to PLS . Both attempt
to learn linear mapping functions to project objects in two spaces
into the same latent space. The difference between CCA and PLS
is that CCA learns cosine as a similarity function and PLS learns
dot product as a similarity function. In our work, we choose PLS
instead of CCA, because it is easier to enhance the efficiency of
the former. In CCA it is necessary to compute the inverse of large
matrices 2, which is computationally expensive.

Measuring query and document similarities is always an impor-
tant research topic in IR. Existing work on query and document
similarities can be divided into two groups: feature based methods
and graph based methods. In the former group, Vector Space Mod-
el (VSM) [24], BM25 [20], and Language Models for Informa-
tion Retrieval (LMIR) [19, 37] make use of features, particularly,
n-gram features to measure query-document similarities. As point-
ed out by Xu et al. [35] and others that these models can be viewed
as models using the dot product between a query vector and a doc-
ument vector as the query-document similarity function. Similarly,
queries can also be represented as n-grams, and the cosine or dot
product can be utilized as the similarity function between them [38,
36]. In [36], queries are represented as n-gram vectors, and a cosine
similarity function is learned by using distance metric learning. In
[5], the authors propose calculating query similarity with term and
n-gram features enriched with a taxonomy of semantic classes. In
[2], queries are represented as vectors in a high dimensional space
with each dimension corresponding to a document. The click fre-
quency on a document is used as the value of the corresponding
dimension. In the latter group, graph based methods exploit the
structure of a click-through bipartite graph to learn the query-query,
document-document, and query-document similarities. For exam-
ple, Latent Semantic Indexing (LSI) [9] can be employed, which
uses SVD to project queries, documents and terms into a latent s-
pace, and calculates query-document, query-query, and document-
document similarities through the dot product of their images in the
latent space. In [15, 1], the authors propose determining the sim-
ilarity of a pair of objects based on the similarity of other pairs of
objects, and the final similarity measure is iteratively calculated on
a bipartite graph. A click-through bipartite graph can also be used
in clustering of similar queries [4, 31]. Craswell and Szummer [7]
extend the idea and propose adopting a backward random walk pro-
cess on a click-through bipartite graph to propagate similarity. Our
method aims to leverage both features and a click-through bipartite
graph to more accurately learn the similarities.
2http://en.wikipedia.org/wiki/Canonical_
correlation

Learning to rank refers to supervised learning techniques for
constructing ranking models using training data [16, 17]. The prob-
lem of learning to rank is different from that of similarity learning in
this paper. We leverage a click-through bipartite graph with meta-
data to learn similarities between queries and documents, while in
learning to rank one constructs a ranking model to predict a rank-
ing list of documents with respect to a query. The similarity learned
with our method can be employed as a feature of a learning to rank
model, and the similarity learning in this paper can be viewed as
feature learning for learning to rank.

Methods for learning similarities between objects by utilizing bi-
partite graphs built from multiple sources have also been studied.
In [8], term relations and document relations are integrated into
a document-term bipartite graph. In [29], the authors extend LSI
when information from different types of bipartite graphs is avail-
able. In [34], the authors use a unified relationship matrix to rep-
resent different types of objects and their relations. In [18], matrix
factorization is simultaneously conducted on two bipartite graphs, a
user-query bipartite graph and a query-document bipartite graph. In
[10], similarity scores are first calculated by the LMIR model and
then the scores are propagated on a click-through bipartite graph to
find similar queries. The method proposed in this paper is differ-
ent from these existing methods. In our method, we make use of
both a click-through bipartite graph and multiple types of features
on the nodes. In that sense, we combine feature based methods
and graph based methods. In contrast, the existing methods are all
graph-based methods and they use either more than one bipartite
graph or a graph with more than one type of relations.

The method proposed in this paper is also related to multi-view
learning [22] in machine learning. In multi-view learning, instances
are assumed to have multiple types of features and the goal is to ex-
ploit the different types of features to learn a model. In our work,
we assume that queries and documents on a click-through bipartite
graph have multiple types of features, which is similar to the as-
sumption in multi-view learning. Our work is unique in that we per-
form multi-view similarity learning on an enriched click-through
bipartite graph. Our method of Multi-view PLS can be regarded as
an extension of PLS to multi-view learning.

The similarity learning problem studied in this paper is not lim-
ited to search, and it can be potentially extended to other appli-
cations such as recommendation system and online advertisement.
Recently, Wang et al. [28] propose a method for advertisement in
a setting similar to ours. We learn query and document similarities
from a bipartite graph with metadata, while they predict possible
clicks between users and advertisements on a network with meta-
data. Note that there is significant difference between our method
and their method. First, they only measure similarity between user-
s and advertisements (corresponding to queries and documents),
while we also measure query-query and document-document simi-
larities. Second, their method assumes that the latent space is pre-
defined and is independent from the similarity function, while in
our method the latent space as well as its similarity function are
learned from data.

3. PROBLEM FORMULATION
Let G = (V,E) denote a click-through bipartite graph. V =

Q
∪

D is the set of vertices, which consists of a set of query vertices
Q = {qi}mi=1 and a set of document vertices D = {di}ni=1. E is the set
of edges between query vertices and document vertices. The edge
ei j ∈ E between query vertex qi and document vertex d j is weighted
by the click number ti j. We assume that G is an undirected graph.
Besides, we assume that there exists rich metadata on the vertices of
the graph. The metadata consists of l types of features (l > 1). The



features may stand for the content of queries and documents and the
clicks of queries and documents on the bipartite graph [2], as will
be seen in Section 5. For each type i (1 6 i 6 l), query q ∈ Q and
document d ∈ D are represented as vectors in space Qi and space
Di, respectively, where Qi and Di are subspaces of the Euclidean
spaces Rsqi and Rsdi . Figure 1 illustrates the relationships.

Our goal is to leverage both the click-through bipartite graph and
the features to learn query and document similarities. The similar-
ities may include query-document similarity, query-query similari-
ty, and document-document similarity. In this paper we only study
query-document similarity and query-query similarity. The same
method can be applied to learning of document-document similar-
ity. Formally, we learn two similarity functions f (q, d) and g(q, q′)
given G and {(Qi,Di)}li=1. Similarity function f (q, d) measures the
similarity between query q ∈ Q and document d ∈ D, and similarity
function g(q, q′) measures the similarity between queries q, q′ ∈ Q.

The question is then how to model the similarity functions f (q, d)
and g(q, q′), and how to accurately and efficiently learn the similar-
ity functions. We propose learning the similarity functions by lin-
early projecting the queries and documents in the query spaces and
document spaces into latent spaces. For each type of feature space
(Qi,Di), we learn two linear mappings LQi and LDi . LQi is an sqi×ki

dimensional matrix which can map a query q from Qi to the ki di-
mensional latent spaceKi, and LDi is an sdi×ki dimensional matrix
which can map a document d from Di to the ki dimensional latent
spaceKi. We assume that ∀i, ki 6 min(sqi, sdi). LQi and LDi are dif-
ferent mapping functions due to the difference between Qi and Di.
Given q ∈ Q and d ∈ D, the images in the latent space Ki are L⊤Qi

q
and L⊤Di

d, respectively. We define similarity functions fi(q, d) and
gi(q, q′) as fi(q, d) = q⊤LQi L

⊤
Di

d, gi(q, q′) = q⊤LQi L
⊤
Qi

q′. In other
words, we take the dot products of images of queries and docu-
ments in the latent spaces as similarity functions. The final similar-
ity functions f (q, d) and g(q, q′) are defined as linear combinations
of { fi(q, d)}li=1 and {gi(q, q′)}li=1: f (q, d) =

∑l
i=1 αi fi(q, d), g(q, q′) =∑l

i=1 αigi(q, q′), where αi > 0 is a combination weight.
We learn the mappings {(LQi , LDi )}li=1 and combination weight-

s {αi}li=1 from the click-through bipartite graph G and the features
{(Qi,Di)}li=1. Specifically, we view the click number of a query-
document pair as an indicator of their similarity. We learn {(LQi , LDi )}li=1
and {αi}li=1 by maximizing the similarities of the observed query-
document pairs on the click-through bipartite graph. The under-
lying assumption is that the higher the click number is, the more
similar the query and the document are in the latent spaces.

Finally, we consider the following learning problem:

arg max
{(LQi ,LDi )}li=1 ,{αi}li=1

∑
euv∈E

l∑
i=1

αi ·
(
tuv · qi⊤

u LQi L
⊤
Di

di
v

)
, (1)

where qi
u and di

v represent the feature vectors of query qu and docu-
ment dv in Qi and Di, respectively. tuv represents the click number
between qu and dv on the click-through bipartite graph G.

Note that an alternative method for learning query and document
similarities fromG and {(Qi,Di)}li=1 is to concatenate different type-
s of feature vectors of queries as well as different types of feature
vectors of documents and learn two mappings for queries and doc-
uments with the two concatenated vectors. The method is a special
case of the learning method (1). We compare the performances of
our proposed method (1) and this alternative method in Section 5.

Objective function (1) may go to infinity, since there are no con-
straints on the mappings {(LQi , LDi )}li=1 and the weights {αi}li=1. The
features {(qi

u, d
i
v) | euv ∈ E, 1 6 i 6 l} are also not bounded.

We consider adding proper constraints to the mapping functions
{(LQi , LDi )}li=1 and the weights {αi}li=1, as shown in the next section.

4. MULTI-VIEW PARTIAL LEAST SQUARES
We further formalize the learning problem in (1) as a constrained

optimization problem. We propose a new learning technique called
Multi-view Partial Least Squares (M-PLS) to solve the problem,
which is a multi-view learning version of PLS. We prove that the
problem has a globally optimal solution. The optimal mappings
can be obtained by Singular Value Decomposition (SVD) and the
optimal weights can be obtained by quadratic programming. We
present the algorithm and its time complexity. We also conduct the-
oretical analysis to demonstrate that our method has the capability
to find high quality similar queries, although query-query similarity
is not directly represented in the formulation.

4.1 Constrained Optimization Problem
First, we normalize the feature vectors such that ∀u, v, i, ||qi

u|| = 1
and ||di

v|| = 1. Second, we add orthogonal constraints on the map-
ping matrices {(LQi , LDi )}li=1. Finally, we introduce ℓ2 regularization
on the weights {αi}li=1.

The similarity learning method is re-formalized as

arg max
{(LQi ,LDi )}li=1 ,{αi}li=1

∑
euv∈E

l∑
i=1

αi ·
(
tuv · qi⊤

u LQi L
⊤
Di

di
v

)
(2)

subject to L⊤Qi
LQi = Iki×ki , L

⊤
Di

LDi = Iki×ki , αi > 0,
l∑

i=1

α2
i 6 1,

where ki 6 min(sqi, sdi) is a parameter and Iki×ki is an identity ma-
trix. A larger ki means preserving more information in the projec-
tion for the type of feature. Although problem (2) is not convex, we
can prove that the globally optimal mappings {(LQi , LDi )}li=1 can be
obtained by Singular Value Decomposition (SVD), and the globally
optimal weights {αi}li=1 can be obtained by quadratic programming
with a closed-form solution.

4.2 Globally Optimal Solution
Basically, there are two steps in finding the global optimum.

First, for each type of features, we find the optimal mappings through
solving SVD. Second, we determine the optimal combination weights.

Specifically, the objective function (2) can be re-written as∑
euv∈E

l∑
i=1

αi ·
(
tuv · qi⊤

u LQi L
⊤
Di

di
v

)
=

l∑
i=1

αi · trace

∑
euv∈E

tuv · qi⊤
u LQi L

⊤
Di

di
v


=

l∑
i=1

αi · trace

L⊤Di
(
∑
euv∈E

tuvdi
vq

i⊤
u )LQi


=

l∑
i=1

αi · trace
(
L⊤Di

MiLQi

)
,

where Mi is defined as
∑

euv∈E tuvdi
vq

i⊤
u .

Suppose that ∀i, ki 6 min(sqi, sdi), the following theorem indi-
cates that the global optimum of the optimization problem

arg max
LQi ,LDi

trace
(
L⊤Di

MiLQi

)
(3)

subject to L⊤Qi
LQi = Iki×ki , L

⊤
Di

LDi = Iki×ki

can be reached through SVD of Mi:

Theorem 4.1. ∀ki 6 min(sqi, sdi), the globally optimal solution
of problem (3) exists. Furthermore, suppose that Mi = UiΣiV⊤i ,



where Σi is an sdi × sqi diagonal matrix with singular values λi
1 >

λi
2 > . . . λ

i
pi
> 0, pi = min(sqi, sdi), Ui = (ui

1, u
i
2, . . . , u

i
sdi

) where {ui
j}

are left singular vectors, and Vi = (vi
1, v

i
2, . . . , v

i
sqi

) where {vi
j} are

right singular vectors. The global maximum is given by
∑ki

j=1 λ
i
j and

the global optimum L̂Qi and L̂Di are given by L̂Qi = (vi
1, v

i
2, . . . , v

i
ki

)
and L̂Di = (ui

1, u
i
2, . . . , u

i
ki

), respectively.

The proof is given in Appendix. With Theorem 4.1, if we define
Λi =

∑ki
j=1 λ

i
j, then we can re-write problem (2) as

max
{(LQi ,LDi )}li=1 ,{αi}li=1

L⊤Qi
LQi
=L⊤Di

LDi
=Iki×ki

,αi>0,
∑l

i=1 α
2
i 61

∑
euv∈E

l∑
i=1

αi ·
(
tuv · qi⊤

u LQi L
⊤
Di

di
v

)

= max
{αi}li=1

αi>0,
∑l

i=1 α
2
i 61

l∑
i=1

αi max
{(LQi ,LDi )}li=1

L⊤Qi
LQi
=L⊤Di

LDi
=Iki×ki

∑
euv∈E

(
tuv · qi⊤

u LQi L
⊤
Di

di
v

)

= max
{αi}li=1

αi>0,
∑l

i=1 α
2
i 61

l∑
i=1

αiΛi. (4)

It can be proved that problem (4) has a closed-form global opti-
mum. The optimal weights are given by

α̂i =
Λi√∑l
i=1 Λ

2
i

, 1 6 i 6 l. (5)

It is easy to verify that when l = 1, problem (2) becomes a problem
solvable by Partial Least Squares (PLS) [21, 25]. The orthogonal
assumptions on the mapping matrices make it feasible to employ
PLS to solve the problem. Therefore, our method of Multi-view
PLS is an extension of PLS.

If we assume that only the click-through bipartite graph is used,
i.e., no feature is used, then problem (2) becomes equivalent to La-
tent Semantic Indexing (LSI) on the click-through bipartite graph [9]3.
In other words, LSI is a special case of our method.

In problem (2), we consider using ℓ2 norm to regularize the weights
{αi}li=1. An alternative method would be to use

∑l
i=1 αi 6 1 (i.e., ℓ1

norm) to regularize them. However, such a regularization will make
the final solution become αi = 1, if Λi = max16 j6l Λ j, and αi = 0,
otherwise. This is a degenerative solution and is not desirable. The
ℓ2 regularization in our method does not suffer from the problem.

4.3 Learning Algorithm
The learning algorithm is described in Algorithm 1. The algo-

rithm contains two steps. First, for each type of feature, it calcu-
lates Mi, and solves SVD of Mi to learn the linear mappings. Then,
it calculates the combination weights using (5).

At Step 2.a, it is necessary to calculate Mi. Suppose that there
are nq queries on the click-through bipartite graph G. Each query
has on average κq clicked documents. Then for each type of feature,
the worst case time complexity of calculating Mi is of order O(nq ·
κq · sqi · sdi), where sqi and sdi denote the dimensionalities of query
space Qi and document space Di, respectively. Although sqi and
sdi can be very large, the query vectors and document vectors are
usually very sparse. This can make the average time complexity
much smaller than the worst case time complexity. Suppose that
each dimension of query vectors has on average cqi non-zero values,
and each document vector has on average cdi non-zero values. The
average time complexity of calculating Mi becomes of order O(sqi ·
3LSI is usually used for learning the similarity between term and
document from a term-document bipartite graph.

Algorithm 1
1: Input: click-through bipartite graph G = (V,E), feature spaces
{(Qi,Di)}li=1, parameters {ki}li=1.

2: For each type of feature space (Qi,Di)

a. Calculate Mi using
∑

euv∈E tuvdi
vqi⊤

u .

b. Calculate SVD of Mi.

c. Take the first ki left singular vectors (ui
1, u

i
2, . . . , u

i
ki

) as L̂Di , and

first ki right singular vectors (vi
1, v

i
2, . . . , v

i
ki

) as L̂Qi .

d. Calculate Λi using
∑ki

j=1 λ
i
j.

3: Calculate combination weight α̂i using equation (5).
4: Output: similarity functions:

a. ∀q, d, f (q, d) =
∑l

i=1 α̂i · qi⊤ L̂Qi L̂
⊤
Di

di.

b. ∀q, q′, g(q, q′) =
∑l

i=1 α̂i · qi⊤ L̂Qi L̂
⊤
Qi

q′i.

cqi · κq · cdi). Since cqi and cdi are much smaller than nq and sdi, Mi

can be calculated very efficiently.
We empirically find in our experiments that sparse query and

document feature vectors also make the matrix Mi sparse. In our
experiments, the ratio of non-zero elements in the matrix Mi is not
larger than 0.5%. Therefore, we can employ the power method (cf.,
[30]) to build an SVD solver. It is an iterative algorithm, and after
i iterations, the ith largest singular values can be obtained. Suppose
that there are C non-zero elements in matrix Mi. The time complex-
ity for calculating each singular value is O(C+ki ·max(sqi, sdi)), and
the total time complexity is O(ki ·C + k2

i ·max(sqi, sdi)). Since Mi is
sparse and C is much smaller than sqi · sdi, when ki is small, SVD
of Mi can be solved efficiently.

4.4 Query Similarity
Problem (2) is formalized as learning of query-document similar-

ity. Actually the optimization can also help learning of query-query
similarity (equivalently document-document similarity). Here, we
show that our method is able to find high quality similar queries as
well. Under the orthogonal assumptions, the results of problem (2)
have two properties which can guarantee that the performance of
the method on similar query finding is high as well.

For a specific feature type i, if the similarity between q, q′ ∈ Qi

is high, then the similarity between images of q and q′ in the latent
space is also high, provided that ki is sufficiently large. Formally,
we assume that there is a small number ε/2 > 0 such that q⊤q′ >
1 − ε/2 (i.e., they have high similarity because q⊤q′ 6 1). Since
||q|| = ||q′|| = 1, we have ||q − q′||2 = ||q||2 + ||q′||2 − 2q⊤q′ 6 ε.
Suppose that LQi = (lQi

1 , . . . l
Qi
ki

). We have

||L⊤Qi
q − L⊤Qi

q′||2 = (q − q′)⊤
ki∑

j=1

lQi
j lQi⊤

j (q − q′) =
ki∑

j=1

|⟨lQi
j , q − q′⟩|2.

Since L⊤Qi
LQi = Iki×ki , we have

||L⊤Qi
q − L⊤Qi

q′||2 =
ki∑

j=1

|⟨lQi
j , q − q′⟩|2 6 ||q − q′||2 6 ε.

Thus, we have q⊤LQi L
⊤
Qi

q′ > (||L⊤Qi
q||2 + ||L⊤Qi

q′||2 − ε)/2. This in-
equality indicates that for a specific feature type i, if the similarity
between two queries q and q′ is high in the feature space Qi, then
the similarity between their images in the latent space is determined



by their norms in the space. The square of the norm of query q in
the latent space can be calculated as

||L⊤Qi
q||2 = q⊤LQi L

⊤
Qi

q = q⊤
ki∑

j=1

lQi
j lQi⊤

j q =
ki∑

j=1

|⟨lQi
j , q⟩|2. (6)

Since usually ki 6 sqi, we have ||L⊤Qi
q||2 6 ||q||2 = 1. With a

sufficiently large ki, we can assume that ||L⊤Qi
q||2 > 1 − δ, and

||L⊤Qi
q′||2 > 1 − δ, where δ > 0 is a small number. Thus, we ob-

tain q⊤LQi L
⊤
Qi

q′ > 1 − δ − ε2 . Note that δ monotonically decreases
when ki increases. In an extreme case, when ki = sqi, δ = 0 hold-
s. We call this property inheritance. This property ensures that
when sufficient information is preserved in the latent space (i.e., ki

is sufficiently large), similar queries in the original feature space
will also be similar in the latent space.

Second, suppose that q1, q2 ∈ Qi, d1, d2 ∈ Di, and q′1 = L⊤Qi
q1,

q′2 = L⊤Qi
q2, d′1 = L⊤Di

d1, and d′2 = L⊤Di
d2. If we assume that q′1

and d′1, q′2 and d′2, and d′1 and d′2 are similar pairs with high simi-
larity, then when ki is sufficiently large, we can obtain high simi-
larity between q′1 and q′2. Formally, we assume that there is a small
number ε > 0 such that q

′⊤
1 d′1 > 1 − ε/18, q

′⊤
2 d′2 > 1 − ε/18, and

d
′⊤
1 d′2 > 1−ε/18. We have ||q′1−q′2|| 6 ||q′1−d′1||+||d′1−d′2||+||q′2−d′2||.

Since q′1 = L⊤Qi
q1 and d′1 = L⊤Di

d1, similar to the analysis of equa-
tion (6), we have ||q′1|| 6 ||q1|| = 1 and ||d′1|| 6 ||d1|| = 1. We
know that ||q′1 − d′1||2 = ||q′1||2 + ||d′1||2 − 2q

′⊤
1 d′1 6 ε/9. Similar-

ly, we can get ||q′2 − d′2||2 6 ε/9 and ||d′1 − d′2||2 6 ε/9. Thus, we
obtain ||q′1 − q′2||2 6 ε. Similarly to the analysis above, we can
say that with a sufficiently large ki, we can have the similarity be-
tween q′1 and q′2 large enough. We call this property transitivity.
The property ensures that when sufficient information is preserved
in the latent space, we can derive similar query pairs from similar
query-document pairs. The property needs high similarity between
documents in the latent space. The condition can be easily met, be-
cause document similarity can be preserved with the “inheritance”
property.

In our experiments, we find that the inheritance property and the
transitivity property can really help us on finding high quality sim-
ilar queries. We also give an example to support our theoretical
analysis.

5. EXPERIMENTS
We conducted experiments to test the performance of the pro-

posed method on relevance ranking and similar query finding. We
used two data sets: enterprise search data and web search data.

5.1 Data Sets
We collected one year click-through data from an enterprise search

engine of an IT company and one week click-through data from a
commercial web search engine. We built two click-through bipar-
tite graphs with the data. If there are more than 3 clicks between
a query and a document, we added a link between them. In oth-
er words we discarded the links between queries and documents
whose click frequency is lower than or equal to 3. Finally, there
are 51, 699 queries and 81, 186 documents on the bipartite graph of
enterprise search data, and there are 94, 022 queries and 111, 631
documents on the bipartite graph of web search data. Each query
has on average 2.44 clicked documents in the enterprise bipartite
graph and each query has on average 1.74 clicked documents in the
web bipartite graph.

We extracted features from the two click-through data sets as
metadata on the bipartite graphs. In this paper, we only considered
two types of metadata because our focus in this paper is verifica-

tion of the effectiveness of the proposed method. First, we took the
words in queries and the words in URLs and titles of documents as
features, referred to as “word features”. Words were stemmed and
stop words were removed. With word features, each query is rep-
resented by a tf-idf vector in the query space, and each document
is also represented by a tf-idf vector in the document space. Each
dimension of the query space corresponds to a unique term and so
does each dimension of the document space. Note that the two s-
paces are of high dimension and very sparse. For the enterprise
search data, there are 9, 958 unique terms. For the web search data,
the dimensionality of term space is 101, 904. Next, we followed [2]
and took the numbers of clicks of documents as features of queries
and the numbers of clicks of queries as features of documents. We
call the features “graph features”, because they are derived from
the bipartite graphs. Each query is represented by a vector of click
numbers in the query space and each document is represented by
a vector of click numbers in the document space. Each dimension
of the query space corresponds to a document on the click-through
bipartite graph, and similarly each dimension of the document s-
pace corresponds to a query on the click-through bipartite graph.
The dimensionalities of the two spaces are also very high, while
the densities of the two spaces are very low.

In addition, we obtained relevance data consisting of judged query-
document pairs from the search engine in a different time period.
We also collected relevance data in the enterprise in a different time
period. There are five level judgments, including “Perfect”, “Ex-
cellent”, “Good”, “Fair”, and “Bad”. To make comparisons with
baseline methods, we removed the queries that are not on the click-
through bipartite graphs. There are 1, 701 queries and associated
documents having judgments in the enterprise search data. Each
query has on average 16 judged documents. The number of judged
queries is 4, 445 in the web search data, and each query has on av-
erage 11.34 judged documents. We randomly split each data set
and used half of them for tuning model parameters and the other
half for model evaluation.

In summary, for both the web data and the enterprise data, we
learned models on a click-through bipartite graph with metada-
ta, tuned model parameters on some relevance data, and evaluated
model performances on other relevance data.

5.2 Experiment Setup
We consider four alternatives to learn a similarity function using

our method: 1) Only word features are used. We denote the model
as M-PLSWord; 2) Only graph features are used. We refer to the
model as M-PLSBipar; 3) The vectors from the word feature space
and the vectors from the graph feature space are concatenated to
create long vectors. The corresponding space is the Cartesian prod-
uct of the word feature space and the graph feature space. We call
the model M-PLSConca; 4) We apply our method to learn a similari-
ty function assuming that queries and documents have two types of
features and we learn a linearly combined similarity function. We
call the model M-PLSCom.

As baselines, we consider feature based methods, graph based
methods, and their linear combinations. In relevance ranking, we
take BM25 as an example of feature based methods. We choose LSI
on click-through bipartite graph and random walk (RW for short)
[7] as examples of graph based methods. We also linearly combine
LSI and RW with BM25. In similar query finding, besides LSI and
RW, we adopt as baseline methods cosine similarity of two query
vectors represented with graph features and cosine similarity of two
query vectors represented with word features. We denote them as
CosB and CosW, respectively. We also linearly combine CosB, LSI,
and RW with CosW.



Table 1: Weights in combination methods on two data sets

Combination weightsModel Components
Enterprise Web

Relevance ranking
LSI+BM25 (LSI,BM25) (0.9, 0.1) (0.8, 0.2)
RW+BM25 (RW,BM25) (0.9, 0.1) (0.8, 0.2)

Similar query finding
CosB+CosW (CosB,CosW) (0.5, 0.5) (0.5, 0.5)
LSI+CosW (LSI,CosW) (0.5, 0.5) (0.5, 0.5)
RW+CosW (RW,CosW) (0.5, 0.5) (0.5, 0.5)

To evaluate the performances of different methods in relevance
ranking, we employ NDCG [14] at positions of 1, 3, and 5 as evalu-
ation measures. For similar query finding, we evaluated the quality
of similar queries found by each method. First, 500 queries were
randomly sampled from the data for model evaluation and their top
3 most similar queries by each method were collected. We manu-
ally judged the quality of the similar queries. The final results are
presented in pos-com-neg graphs, where “pos” represents the ra-
tio of queries for which our method provides higher quality similar
queries, “com” represents the ratio of queries on which the per-
formances of our method and the baseline methods are compara-
ble, and “neg” represents the ratio of queries on which the baseline
methods do a better job.

5.3 Parameter Setting
We set the parameters of the methods in the following way. In

BM25, the default setting is used. There are two parameters in
random walk (RW for short): the self-transition probability and the
number of transition steps. Following the conclusion in [7], we
fixed the self-transition probability as 0.9 and chose the number
of transition steps from {1, . . . , 10}. We found that RW reaches a
“stable” state with a few steps. In the experiments on both the web
and enterprise data sets, after 5 steps we saw no improvement on
the data for parameter tuning in terms of the evaluation measures.
Therefore, we set 5 as the number of transition steps of RW on both
data sets.

In LSI, M-PLSWord, M-PLSBipar, M-PLSConca, and M-PLSCom,
the parameter is the dimensionality of the latent space. We set
the dimensionalities in the range of {100, 200, . . . , 1000} for both
the enterprise search data and the web search data. We found that
when we increase the dimensionality of the latent space, the perfor-
mances of LSI, M-PLSWord, M-PLSBipar, M-PLSConca, and M-PLSCom

are all improved on the data for parameter tuning. The larger the
dimensionality is, the better the performance is. On the other hand,
a large dimensionality means that we need to calculate more singu-
lar values and use more computation power. Therefore, we finally
chose 1000 as the dimensionalities of the latent spaces for LSI,
M-PLSWord, M-PLSBipar, M-PLSConca, and M-PLSCom on both data
sets.

In the combination models, the weights are also parameters. In
LSI+BM25 and RW+BM25 for relevance ranking, LSI+CosW, R-
W+ CosW, and CosB+ CosW for similar query finding, we chose the
combination weights within {0.1, 0.2, . . . , 0.9}. For relevance rank-
ing the weights were determined based on the results on the data for
parameter tunning. For similar query finding we found that the re-
sults of LSI+CosW, RW+ CosW, and CosB+ CosW are not sensitive
to the combination weights. Therefore, we only report their results
under uniform weights. Table 1 shows the weights in each combi-
nation model. Note that in M-PLSCom, the combination weights are
chosen automatically using equation (5).

Table 2 shows the properties of matrices for computing SVD in

Table 2: Properties of SVD matrices in each method

Enterprise search data
Dimension Density

M-PLSCom 9958 × 9958, 81186 × 51699 0.4%, 0.08%
M-PLSWord 9958 × 9958 0.4%
M-PLSBipar 81186 × 51699 0.08%
M-PLSConca 91144 × 61657 0.5%

LSI 81186 × 51699 0.003%
Web search data
Dimension Density

M-PLSCom 101904 × 101904, 111631 × 94022 0.008%, 0.01%
M-PLSWord 101904 × 101904 0.008%
M-PLSBipar 111631 × 94022 0.01%
M-PLSConca 213535 × 195926 0.01%

LSI 111631 × 94022 0.002%

Table 3: Relevance ranking result on enterprise search data
NDCG@1 NDCG@3 NDCG@5

M-PLSCom 0.715 0.733 0.747
M-PLSConca 0.700 0.728 0.742
M-PLSWord 0.688 0.718 0.739
M-PLSBipar 0.659 0.684 0.705
BM25 0.653 0.657 0.663
RW 0.654 0.683 0.700
RW+BM25 0.664 0.688 0.705
LSI 0.656 0.676 0.695
LSI+BM25 0.692 0.701 0.712

each method. We can see that although the matrices have high di-
mensionalities, they are really sparse, and thus it is possible to con-
duct SVD on them efficiently.

5.4 Experimental Results

5.4.1 Relevance Ranking Results
Table 3 and Table 4 give the evaluation results on relevance rank-

ing for the two data sets. We can see that on both data sets, our
method M-PLSCom not only outperforms the state of the art feature
based methods such as BM25 and graph based methods such as
RW, but also performs better than their linear combinations. We
conducted sign test on the improvements of M-PLSCom over the
baseline methods. The results show that all the improvements are
statistically significant (p < 0.01).

M-PLSConca also performs well on both data sets. The higher
complexity of it makes it less attractive than M-PLSCom (Note that
the matrix of M-PLSConca for SVD has a high dimensionality and is
dense). Therefore it is better to conduct multi-view PLS instead of
single view PLS. M-PLSBipar performs worst among the alternatives
of our method. This may be because 1) the features of M-PLSBipar

are more sparse (cf., Table 2); 2) both the features and the simi-
larities (i.e., click numbers) in learning of M-PLSBipar are from the
click-through bipartite graph and there is overlap between them.

More interestingly, we find that when we linearly combine our
method M-PLSCom with BM25, the performances of our method
can be further improved, indicating that our method M-PLSCom is
complementary to BM25. Table 5 shows the results. Note that the
learned linear combination model can be viewed as a simplified
learning to rank model.

5.4.2 Similar Query Finding Results
We show the performance of the proposed method on similar

query finding. We compared M-PLSCom with other baseline meth-
ods on the two data sets. In each data set, we evaluated the quality



Table 4: Relevance ranking result on web search data
NDCG@1 NDCG@3 NDCG@5

M-PLSCom 0.681 0.731 0.739
M-PLSConca 0.676 0.728 0.736
M-PLSWord 0.674 0.726 0.732
M-PLSBipar 0.612 0.680 0.693
BM25 0.637 0.690 0.690
RW 0.655 0.704 0.704
RW+BM25 0.671 0.718 0.716
LSI 0.588 0.665 0.676
LSI+BM25 0.649 0.705 0.706

Table 5: Performances of combination of M-PLSCom and BM25
on relevance ranking

NDCG@1 NDCG@3 NDCG@5
Enterprise search data 0.727 0.737 0.749

Web search data 0.697 0.740 0.745

of similar queries of 500 random queries found by each method. Fi-
nally, we presented the comparisons through pos-com-neg graphs.

Figure 3 and Figure 4 show the results. We can see that M-PLSCom

significantly outperforms the feature based methods and graph based
methods, including CosB, CosW, LSI and RW. Our method per-
forms better on more than 15% queries from the enterprise data
and on more than 25% queries from the web data. Only on less
than 7% queries from the enterprise data and less than 3% queries
from the web data, our method performs worse. We conducted sign
test, and the results show that all the improvements are statistically
significant (p < 0.01). Among the combined models, CosB +CosW

and RW + CosW perform comparably well, and our method still
outperforms them. However, the improvement of our method over
those methods is not so significant.

We investigated the reasons that the methods can or cannot achieve
high performance in similar query finding. First, we found that
CosB, LSI and RW are good at handling head queries, since they
all rely on co-clicks on the click-through bipartite graph to calcu-
late query similarity. Among them, RW performs a little better than
CosB. This may be because similarity on the bipartite graph can be
propagated by RW. In contrast, for tail queries, we cannot expect
these methods to have good performances. In an extreme case, if
a query only has one clicked document and the document is on-
ly clicked by the query, then no similar queries can be found for
the query. We call this kind of query “isolated island”. Second,
no matter whether two queries have co-clicked documents, if they
share some words, they are likely to be judged as similar queries by
CosW. Therefore, CosW is good at handling queries sharing terms.
This is especially true for tail queries, since tail queries tend to be
longer. However, if two similar queries do not share any term, their
similarity cannot be captured by CosW. The problem is called “ter-
m mismatch”, and becomes serious when the queries have spelling
errors, abbreviations, and concatenations. The two types of meth-
ods (either use click graph or use terms) are complementary, and
thus when combined together, it is possible to find similar queries
with higher probability.

We found that on most queries our method M-PLSCom performs
equally well with the combination baseline CosB + CosW. Some-
times, the two methods even give the same top 3 most similar
queries. It indicates that click-through bipartite graph and features
are really useful for similar query finding. On the other hand, we
also found that our method can work very well for some really dif-
ficult queries on which graph based methods and word based meth-
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Figure 3: Similar query evaluation on enterprise search data.
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Figure 4: Similar query evaluation on web search data.

ods fail. The result demonstrates that our method really has the
capability to leverage the enriched click-through bipartite graph to
learn query similarities.

Table 6 shows some examples on the similar queries found by
M-PLSCom. We can see that M-PLSCom is able to find high quali-
ty similar queries, even for some “difficult” queries, which contain
typos, abbreviations, concatenations and rare words. For the tail
queries consisting of rare words, usually it is very hard for the base-
line methods to find their similar queries, because they only have
a few clicks. Nonetheless, M-PLSCom is still able to find similar
queries for them, which is really surprising.

Finally, we particularly investigated the performance of our method
on tail queries on the web data, since the web data set is larg-
er and more sparse than the enterprise data set. We treat queries
with total click numbers less than 10 on the click-through bipar-
tite graph as tail queries. There are totally 212 tail queries in the
500 samples from the web data. Figure 5 gives the “pos-com-neg”
comparison results. We can see that on tail queries, our method
M-PLSCom performs even better than itself on the whole sample
set. We further investigated the reasons that our method is capable
of finding high quality similar queries in the tail. Table 7 shows an
example. The query ‘walmartmoneycard’ is a concatenation, and
is also an isolated island. As a result, for CosB, LSI and RW, no
similar queries can be found. CosW suffers from term mismatch,
and thus only those queries that can exactly match ‘walmartmon-
eycard’ are returned. The combination methods can only use CosW,
and thus return the same results with CosW. These baseline meth-
ods cannot find similar queries for ‘walmartmoneycard’. In con-
trast, M-PLSCom can work better than the baseline methods. We
found that the key reason is that our method can effectively use
the click-through bipartite graph, specifically similar documents
on the graph. The query ‘walmartmoneycard’ has a clicked doc-
ument https://www.walmartmoneycard.com/, and its similar
query ‘wal-mart prepaid visa activation’ also has a clicked docu-
ment https://www.walmartmoneycard.com/walmart/homepage.
aspx. Through the optimization, both the similarity between ‘wal-



Table 6: Examples of similar queries found by M-PLSCom

Original Query Similar Queries
Spelling Errors

dictonary
web dictionary

onlinedictionary
dictionery

wickapedia
www.wikipedia.org

wikepedia
www.wikipedia.com

gooole.com
wwww.google.com

www.gooogle
www.goolgle.com

Abbreviations

fl.lottery
lottery florida

florida lottery numbers
florida lottery results

ym
yahoo messanger
yahoomessenger

yahoo im messenger

bofa online banking
bank america online banking

bank of america online
www.bank of america online banking

Concatenations

dickssportinggoods
dicks sporting goods

dicks sporting good store
dicks sporting goods coupons

googlenews
google news
goggle news

news.google.com

peoplesearch
search people
people search

yahoo people search
Tail Queries

star wars anniversary edition
lego darth vader fighter

www.star wars legos.com
star wars legos
star wars lego

american express online
account summary

american express account online
american express account
american express online

read full books online free
read books online free

free online books to read
read books online

martmoneycard’ and https://www.walmartmoneycard.com/ and
the similarity between ‘wal-mart prepaid visa activation’ and
https://www.walmartmoneycard.com/walmart/homepage.aspx
are maximized in the latent space (they are 0.71 and 0.53, respec-
tively). Moreover, since the two documents share a common term
‘walmartmoneycard’ in the term space, their similarity is also cap-
tured in the latent space through the learning process of our method
(with similarity 0.47). Therefore, with the two similar documents
as a bridge, our method can connect the two queries and treat them
as similar queries.

6. CONCLUSION AND FUTURE WORK
In this paper, we have studied the issue of learning query and

document similarities from a click-through bipartite with metada-
ta. The click-through bipartite represents the click relations be-
tween queries and documents, while the metadata represents multi-
ple types of features of queries and documents. We aim to leverage
both the click-through bipartite and features to perform the learn-
ing task. We have proposed a method that can solve the problem
in a principled way. Specifically, for each type of features, we use
two different linear mappings to project queries and documents in-
to a latent space. Then we take the dot product in the latent space
as the similarity function between query-document pairs. Simi-

Table 7: Result on a difficult query

Query: walmartmoneycard

M-PLSCom

www.walmartmoneycard.com
walmartmoneycard.com

wal-mart prepaid visa activation

CosB, LSI, RW
N / A
N / A
N / A

CosW

www.walmartmoneycard.com
walmartmoneycard.com

N / A

CosB + CosW, LSI + CosW,
RW+ CosW

www.walmartmoneycard.com
walmartmoneycard.com

N / A
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Figure 5: Similar query evaluation on the tail queries from web
search data.

larities between query-query and document-document pairs are si-
multaneously defined. The final similarity function is defined as
a linear combination of similarity functions from different types
of features. We learn the mappings and combination weights by
maximizing the similarities of the observed query-document pairs
on the click-through bipartite graph, and make orthogonal assump-
tions on the mappings and regularize the weights using ℓ2 norm.
We have proved that the learning problem has a global optimum.
The mappings can be obtained efficiently through Singular Val-
ue Decomposition (SVD) and the weights can be obtained from
a closed-form solution of a quadratic program. It turns out to be
a new learning method as an extension of Partial Least Squares,
referred to as Multi-view PLS. We have theoretically analyzed the
proposed method, and demonstrated its capability on finding high
quality similar queries (also similar documents). We have conduct-
ed experiments on large scale enterprise search and web search data
to test the performance of our method. The results not only indi-
cate that our method can significantly outperform the state of the
art methods on relevance ranking and similar query finding, but al-
so verify the correctness of our theoretical analysis.

As future work, we want to further enhance the efficiency of our
method and test its performance on larger data sets. To achieve the
goal, we may need to parallelize the learning algorithm. We want to
incorporate the similarity learned by our method into a large learn-
ing to rank system and investigate whether the similarity can im-
prove the performance of the learning to rank system. We also want
to study the kernelization of our method, so that our method is still
applicable when kernel matrices instead of features are available.
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APPENDIX
We give the proof of Theorem 4.1 here.

Proof. Suppose that LQi =
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Particularly, letting lDi
j = ui

j and lQi
j = vi

j, we can obtain the
global maximum.


