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REGULARIZED LATENT SEMANTIC
INDEXING FOR TOPIC MODELING

BACKGROUND

Topic modeling is useful for knowledge discovery, rel-
evance ranking in search, and document classification.
Recent years have seen significant progress on topic model-
ing technologies in machine learning, information retrieval,
natural language processing, and other related fields. Given a
collection of text documents, a topic model represents the
relationship between terms and documents through latent
topics. A topic is defined as a probability distribution of terms
or a cluster of weighted terms. A document is then viewed as
a bag of terms generated from a mixture of latent topics.

Studies on topic modeling fall into two categories: proba-
bilistic approaches and non-probabilistic (matrix factoriza-
tion) approaches. In the probabilistic approaches, a topic is
defined as a probability distribution over terms and docu-
ments are defined as data generated from mixtures of topics.
To generate a document, one chooses a distribution over
topics. Then, for each term in that document, one chooses a
topic according to the topic distribution, and draws a term
from the topic according to its term distribution. For example,
Probabilistic Latent Semantic Indexing (PLSI) and Latent
Dirichlet Allocation (LDA) are two widely-used generative
models. (See, T. Hoffman, Probabilistic Latent Semantic
Indexing, SIGIR, pages 50-57, 1999; and D. Blei, A. Y. Ng,
and M. 1. Jordan, Latent Dirichlet Allocation, JMLR, 3:993-
1022, 2003.) In non-probabilistic approaches, a term-docu-
ment matrix is projected into a K-dimensional topic space in
which each axis corresponds to a topic. In the topic space,
each document is represented as a linear combination of the K
topics. Latent Semantic Indexing (LSI) is a representative
non-probabilistic model. (See, S. Deerwester, S. T. Dumais,
G. W. Furnas, T. K. Landauer, and R. Harshman, Indexing By
Latent Semantic Analysis, J AM SOC INFORM SCI, 41:391-
407, 1990.) LSI decomposes the term-document matrix with
single value decomposition (SVD) under the assumption that
topics are orthogonal. See also Non-negative Matrix Factor-
ization (NMF) methods (e.g., D. D. Lee and H. S. Seung,
Learning The Parts Of Objects With Nonnegative Matrix
Factorization, Nature, 401:391-407,1999; and D. D. Lee and
H. S. Seung, Algorithms For Non-Negative Matrix Factoriza-
tion, NIPS 13, pages 556-562. 2001) and Sparse Coding
methods (e.g., H. Lee, A. Battle, R. Raina, and A. Y. Ng,
Efficient Sparse Coding Algorithms, NIPS, pages 801-808.
2007; and B. A. Olshausen and D. J. Fieldt, Sparse Coding
With An Overcomplete Basis Set: A Strategy Employed By
V1, VISION RES, 37:3311-3325, 1997).

One of the main challenges in topic modeling is scaling to
millions or even billions of documents while maintaining a
representative vocabulary of terms, which is necessary in
many applications such as web search. A typical approach is
to approximate the learning processes of an existing topic
model.

Probabilistic topic models like LDA and PLSI are not
scalable. The scalability challenge for probabilistic topic
models like LDA and PLSI mainly comes from the necessity
of simultaneously updating the term-topic matrix to meet the
probability distribution assumptions. When the number of
terms is large, which is inevitable in real applications, this
problem becomes particularly severe. For LS, the scalability
challenge is due to the orthogonality assumption in the for-
mulation, and as a result the problem needs to be solved by
Singular Value Decomposition (SVD) and thus is hard to be
parallelized.
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Most efforts to improve topic modeling scalability have
modified existing learning methods, such as LDA. Newman,
et al. proposed Approximate Distributed LDA (AD-LDA), in
which each processor performs a local Gibbs sampling itera-
tion followed by a global update. (D. Newman, A. Asuncion,
P. Smyth, and M. Welling, Distributed Inference For Latent
Dirichlet Allocation, NIPS, 2008.) Two recent papers imple-
mented AD-LDA as PLDA and meodified AD-LDA as
PLDA+, using MPI and MapReduce. (See, Y. Wang, H. Bai,
M. Stanton, W. Yen Chen, and E. Y. Chang, PLDA: Parallel
Latent Dirichlet Allocation For Large-Scale Applications,
AAIM, pages 301-314, 2009; 7. Liu, Y. Zhang, and E. Y.
Chang. PLDA+: Parallel Latent Dirichlet Allocation With
Data Placement And Pipeline Processing, 7157, 2010; R.
Thakur and R. Rabenseifner, Optimization Of Collective
Communication Operations In MPICH, INT J HIGH PER-
FORM C, 19:49-66, 2005; and J. Dean, S. Ghemawat, and G.
Inc, Mapreduce: Simplified Data Processing On Large Clus-
ters, OSDI, 2004.). L. AlSumait, D. Barbara, and C. Domeni-
coni, the authors of On-Line LDA: Adaptive Topic Models
For Mining Text Streams With Applications To Topic Detec-
tion And Tracking, ICDM, 2008, proposed purely asynchro-
nous distributed LDA algorithms based on Gibbs Sampling or
Bayesian inference, called Async-CGB or Async-CVB,
respectively. In Async-CGB and Async-CVB, each processor
performs a local computation step followed by a step of
communicating with other processors. In all the methods, the
local processors need to maintain and update a dense term-
topic matrix, usually in memory, which becomes a bottleneck
for improving the scalability. Similarly, online versions of
stochastic LDA have been proposed. (See, L. AlSumait, D.
Barbara, and C. Domeniconi, On-Line LDA: Adaptive Topic
Models For Mining Text Streams With Applications To Topic
Detection And Tracking, ICDM, 2008; and M. D. Hoffman,
D. M. Blei, and F. Bach, Online [earning For Latent Dirichlet
Allocation, NIPS, 2010.)

Sparse methods have recently received a lot of attention in
machine learning community. These methods aim to learn
sparse representations (simple models) hidden in the input
data by using 1, norm regularization. Sparse Coding algo-
rithms are proposed which can be used for discovering basis
functions, to capture meta-level features in the input data.
See, for example, H. Lee, A. Battle, R. Raina, and A.Y. Ng,
Efficient Sparse Coding Algorithms, NIPS, pages 801-808.
2007; and B. A. Olshausen and D. J. Fieldt, Sparse Coding
With An Overcomplete Basis Set: A Strategy Employed By
V1, VISION RES, 37:3311-3325, 1997. One justification to
the sparse methods is that human brains have similar sparse
mechanism for information processing. For example, when
Sparse Coding algorithms are applied to natural images, the
learned bases resemble the receptive fields of neurons in the
visual cortex. (B. A. Olshausen and D. J. Fieldt, Sparse Cod-
ing With An Overcomplete Basis Set: A Strategy Employed
By V1, VISION RES, 37:3311-3325, 1997.) Previous work
on sparse methods mainly focused on image processing. (R.
Rubinstein, M. Zibulevsky, and M. Elad, Double Sparsity:
Learning Sparse Dictionaries For Sparse Signal Approxima-
tion, IEEE T SIGNAL PROCES, pages 1553-1564, 2008.)
The use of sparse methods for topic modeling was also pro-
posed very recently by Chen et al. (. Chen, B. Bai, Y. Qi, Q.
Lin, and J. Carbonell, Sparse Latent Semantic Analysis, NIPS
Workshop, 2010.) Their motivation was not to improve scal-
ability and they made an orthogonality assumption (requiring
an SVD). C. Wang and D. M. Blei have proposed to discover
sparse topics based on a modified version of LDA. (C. Wang
and D. M. Blei, Decoupling Sparsity And Smoothness In The
Discrete Hierachical Dirichlet Process, NIPS, 2009.)
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SUMMARY

This disclosure describes a Regularized Latent Semantic
Indexing approach to topic modeling of electronic docu-
ments. The Regularized Latent Semantic Indexing approach
may allow an equation involving an approximation of a term-
document matrix to be solved in parallel by multiple calcu-
lating units. The equation may include terms that are regular-
ized via either 1, norm and/or via 1, norm. The Regularized
Latent Semantic Indexing approach may be applied to a set,
or a fixed number, of documents such that the set of docu-
ments is topic modeled. Alternatively, the Regularized Latent
Semantic Indexing approach may be applied to a variable
number of documents such that, over time, the variable of
number of documents is topic modeled.

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is described with reference to the
accompanying figures. In the figures, the left-most digit(s) of
areference number identifies the figure in which the reference
number first appears. The same reference numbers in differ-
ent figures indicate similar or identical items.

FIG. 1 is a schematic diagram of an illustrative environ-
ment to for topic modeling through scalable parallelization.

FIG. 2 is a schematic diagram of distributed Regularized
Latent Semantic Indexing (RLSI).

FIG. 3 is a flow diagram of an illustrative process to per-
form topic modeling.

FIG. 4 is a flow diagram of another illustrative process to
perform topic modeling.

FIG. 5 is a flow diagram of yet another illustrative process
to perform topic modeling.

FIG. 6 is a block diagram of an illustrative computing
device that may be deployed in the environment shown in
FIG. 1.

DETAILED DESCRIPTION
Overview

Topic modeling can boost the performance of information
retrieval, but its real-world application is limited due to scal-
ability issues. Scaling to larger document collections via par-
allelization is an active area of research, but most solutions
require drastic steps such as vastly reducing input vocabulary.

Regularized Latent Semantic Indexing (RLSI) is a new
method which is designed for parallelization. It is as effective
as existing topic models, and scales to larger datasets without
reducing input vocabulary. RLSI formalizes topic modeling
as a problem of minimizing a quadratic loss function regular-
ized by, and/or1, norm. This formulation allows the learning
process to be decomposed into multiple sub-optimization
problems which can be optimized in parallel, for example via
MapReduce. In one embodiment, 1, norm is applied on topic
representations and 1, norm on document representations, to
create a model with compact and readable topics and useful
for retrieval.

One of the key problems in topic modeling is to improve
scalability, to handle millions of documents or even more. As
collection size increases, so does vocabulary size, rather than
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4

a maximum vocabulary being reached. For example, in an
experiment involving 1.6 million web documents, there are
more than 7 million unique terms even after pruning the low
frequency ones (e.g., term frequency in the whole collection
less than 2). This means that both matrices, term-topic (U)
and topic-document (V), grow as the number of documents
increases.

Regularized Latent Semantic Indexing (RLSI) is intrinsi-
cally scalable. Topic modeling is formalized as minimization
of a quadratic loss function on term-document occurrences
regularized by 1, and/or 1, norm. Specifically, in RLSI the text
collection is represented as a term-document matrix (D),
where each entry represents the occurrence (or term fre-
quency-inverse document frequency (tf-idf) score) of a term
in a document. The term-document matrix (D) is then
approximated by the product of two matrices: a term-topic
matrix (U) which represents the latent topics with terms and
atopic-document matrix (V) which represents the documents
with topics. Finally, a quadratic loss function is defined as the
squared Frobenius Norm of the difference between the term-
document matrix (D) and the product of term-topic matrix
(U) and topic-document matrix (V). Both 1, norm and 1, norm
may be used for regularization. In one embodiment, 1, norm is
applied to topic representations U and 1, norm is applied to
document representations V, which can result in a model with
compact and readable topics and useful for retrieval. While
RLSI makes use of the same quadratic loss function as LSI,
RLSI differs from L.SI in that it uses regularization rather than
orthogonality to constrain the solutions. In contrast to LSI,
which is not scalable, RLSI is scalable.

In one embodiment, the learning process of RLSI itera-
tively updates the term-topic matrix (U) given the fixed topic-
document matrix (V), and updates the topic-document matrix
(V) given the fixed term-topic matrix (U). The formulation of
RLSI makes it possible to decompose the learning problem
into multiple sub-optimization problems and conduct learn-
ing in parallel. Specifically, for both the term-topic matrix (U)
and the topic-document matrix, the update in each iteration is
decomposed into many sub-optimization problems. These
may be run in parallel, which is a reason that RLSI can scale
up.
In one embodiment, RLSI is implemented employing
MapReduce. A MapReduce system maps the sub-optimiza-
tion problems over multiple processors and then merges (re-
duces) the results from the processors. During this process,
documents and terms are distributed and processed automati-
cally.

Regularization is a technique in machine learning to pre-
vent over-fitting. Typical examples of regularization in
machine learning include the use of 1, and 1, norms. Regular-
ization via 1, norm uses the sum of absolute values of param-
eters and thus has the effect of causing many parameters to be
zero and selecting a sparse model as solution. Regularization
via 1, norm, on the other hand, uses the sum of squares of
parameters and thus can make a smooth regularization and
effectively deal with over-fitting.

The processes and systems described herein may be imple-
mented in a number of ways. Example implementations are
provided below with reference to the following figures
Ilustrative Environment

FIG. 1 is a schematic diagram of an illustrative environ-
ment 100 for topic modeling of documents through scalable
parallelization. The environment 100 may include at least one
RLSI system, individually referenced as 102a-102¢ and col-
lectively referenced as 102, and a communication link 104.
The RLSI system 102 is communicatively coupled to a docu-
ment source 106 via the communication link 104. The com-
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munication link 104 may be a wireless or wired, including
optical fiber, communication link that provides communica-
tion paths.

Document source 106 may include a static or quasi-static
document database 108, a document database 110, and docu-
ment servers network 112. The document servers network
112 may conform to internet protocols and may include wide
area networks (WANs), the World Wide Web being an exem-
plary WAN;, and local area networks (LANs). The document
servers network 112 includes a plurality of document servers
114, which are communicatively coupled together. In one
embodiment, the document servers 114 are web servers that
store and provide documents 116 such as webpages. The
number of documents stored in the servers 114 may vary over
time as additional documents 120 are uploaded and old/ex-
pired documents 122 are removed.

The static or quasi-static document database 108 has a
plurality (N) of documents 118 stored therein. The number
(N) of documents 118 stored in the static or quasi-static
document database 108 may be generally fixed or change
infrequently over time. For example, additional documents
120 may be added to the static or quasi-static document
database 108 on a weekly, or monthly, or even longer than a
monthly, basis and similarly, expired documents 122 may be
removed from the static or quasi-static document database
108 on a weekly, or monthly, or even longer than a monthly,
basis.

The document database 110 also has a plurality of docu-
ments 124 stored therein. The number (N(t)) of documents
124 stored in the document database 120 may vary over time.
For example, additional documents 120 may be added to the
document database 110 on a daily, or hourly, or even less than
hourly, basis, and similarly, expired documents 122 may be
removed from the document database 110 on a daily, or
hourly, or even less than hourly, basis.

The RLSI system 102 retrieves documents 116, 118, 124
from the document source 106 and topic models the retrieved
documents 116, 118, 124.

In one embodiment, the RLSI system 1024 includes mul-
tiple computing devices 126 coupled together by a network
128. The multiple computing devices 126 may be servers,
main frame computers, personal computers, etc. The multiple
computing devices 126 work in parallel to topic model the
retrieved documents 116, 118, 124. One or more of the com-
puting devices 126 may be a multi-processor computing
device. Further, one or more processors of the computing
devices 126, including multi-processor computing devices,
may be a multi-core processor.

The RLSI system 1025 includes at least one multi-proces-
sor computing device 130 having multiple processors 132.
The multiple processors 132 work in parallel to topic model
the retrieved documents 116, 118, 124. One or more of the
processors 132 of the multi-processor computing device 130
may be a multi-core processor

The RLSI system 102¢ includes at least one computing
device 134 having at least one multi-core processor 136. The
multi-core processor 136 includes multiple processing cores,
which work in parallel to topic model the retrieved documents
116, 118, 124.

For the purposes of this disclosure, a calculating unit is
defined as including, at least one of, a processing core of a
multi-core processor, a processor of a multi-processor com-
puting device, and a computing device.

RLSI Overview

Documents 116, 118, 124 retrieved from the document
source 106 may be described as a set of documents D with
size N, containing terms from a vocabulary V with size M. A
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document is simply represented as an M-dimensional vector
d, where the m” entry denotes the score of the m” term, for
example, a Boolean value indicating occurrence, term fre-
quency-inverse document frequency (tf-idf) or joint probabil-
ity of the term and document. The N documents in D are then
represented in an MxN term-document matrix D=[d,, . . .,
d,], in which each row of the term-document matrix D cor-
responds to a term and each column of the term-document
matrix D corresponds to a document.

Columns of a matrix such as, for example, the term-docu-
ment matrix D, may be referred to herein as column-vectors
of the matrix, and similarly, rows of a matrix may be referred
to herein as row-vectors of the matrix.

A topic is defined over terms in the vocabulary and is also
represented as an M-dimensional vector u, where the m™
entry denotes the weight of the m” term in the topic. Intu-
itively, the terms with larger weights are more indicative to
the topic. Suppose that there are K topics in the collection.
The K topics can be summarized into an MxK term-topic
matrix U=[u,, ..., ug], in which each column corresponds to
a topic.

Topic modeling means discovering the latent topics in the
document collection as well as modeling the documents by
representing them as mixtures of the topics. More precisely,
giventopics u, ..., Ug, document d,, is succinctly represented
as

K
dy = Z Vit = Uvy,
=1

where v,,, denotes the weight of the k? topic u,, in document
d,,. The larger value of v,,,, the more important role topic u,
plays in the document. Let V=[v,, . . ., v,] be the topic-
document matrix, where column v,, stands for the represen-
tation of document d,, in the latent topic space. Table 1 below
provides a summary of notation.

TABLE 1

Table of notations.

Notation Meaning

M Number of terms in vocabulary

N Number of documents in collection

K Number of topics

D € RM®¥ Term-document matrix [d;, . .., dy]
d, The n document

d,. Weight of the m? term in document d,,
U € RM<K Term-topic matrix [uy, .. ., Ug]

uy The k topic

Uy Weight of the m? term in topic u,

V EREN Topic-document matrix [v,, ..., Vy]
Y, Representation of d,, in the topic space
Vi Weight of the k™ topic in v,,

Different topic modeling techniques choose different sche-
mas to model matrices U and V and impose different con-
straints on them. For example, in the generative topic models
such as PLST and LDA, u,, . . ., u, are probability distribu-
tions so that

fork=1,...,K;InLS], topics u,, . . ., ug are orthogonal and
thus SVD can be applied.
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However, Regularized Latent Semantic Indexing (RLSI)
learns latent topics as well as representations of documents
from the given text collections in the following way.

Document d,, is approximated as Uv,, where U is the term-
topic matrix (U) and v, is the representation of d,, in the latent
topic space. The goodness of the approximation is measured
by the quadratic loss of the difference between d,, and Uv,:
|ld,=Uv,|l,>. Furthermore, regularization is made on topics
and document representations. Specifically in some embodi-
ments, 1, norm regularization is applied to term-topic matrix
U (i.e., topics u,, . . ., u,) and 1, is applied to the topic-
document matrix V (i.e., document representations vy, . . .,
v, to favor a model with compact and readable topics and
useful for retrieval.

Thus, given a text collection D={d,, . . ., dy}, RLSI
amounts to solving the following optimization problem
shown in Equation (1):

N K N ()
gmin | > ld, = Ol + 21 3 el +20 3 vl
i P k=1 n=1

where A, Z0 is the parameter controlling the regularization
on u,: the larger value of A, the more sparse u,; and A,=0 is
the parameter controlling the regularization on v,: the larger
value of A,, the larger amount of shrinkage on v,,.

In general, the regularization on topics and document rep-
resentations (the second term and the third term) can be either
1, norm or 1, norm. When they are 1, and 1,, respectively, the
process is equivalent to Sparse Coding. When both of them
arel,, the model is similar to a double sparse model. Note that
both Sparse Coding and double sparse model formulate opti-
mization problems in constrained forms instead of regular-
ized forms. The two forms are equivalent.

Using the formulation above (i.e. regularization via l; norm
ontopics and 1, norm on document representations) leads to a
model with compact and readable topics and useful for
retrieval. Advantages of the above formulation are included
below.

First, 1; norm regularization on topics has the effect of
making them compact, under the assumption that the essence
of'a topic can be captured via a small number of terms, which
is reasonable in practice. In many applications, small and
concise topics are more useful. For example, small topics can
be interpreted as sets of synonyms, roughly corresponding to
the WordNet synsets used in natural language processing.

Second, 1, norm can make the topics readable, no matter
whether it is imposed on topics or document representations.
This has advantages in applications such as text summariza-
tion and visualization.

Third, there are four ways of combining 1, and 1, norms.
Results of retrieval experiments across multiple test collec-
tions described herein, across multiple test collections, show
that better ranking performance may be achieved with 1, norm
on topics and 1, norm on document representations.

Last, in both learning and using of topic models, topic
sparsity means that topics may be efficiently stored and pro-
cessed. In some embodiments, existing techniques on sparse
matrix computation may be employed, which are efficient
and scalable.

RLSI Optimization

The optimization equation (1) is convex with respect to U
when V is fixed and convex with respect to V when U is fixed.
However, it is not convex with respect to both of them. Fol-
lowing the practice in Sparse Coding, the function in Equa-
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tion (1) may be optimized by alternately minimizing it with
respect to term-topic matrix U and topic-document matrix V.
This procedure is summarized in Algorithm 1, hereinbelow.
Note that for simplicity Algorithm 1 describes the case of
when 1, norm is imposed on topics and 1, norm on document
representations. However, other the scope of the disclosure is
not limited to this regularization strategy. Other regulation
strategies such as, but not limited to, include: (a) imposing 1,
norm on topics and document representations; (b) imposing 1,
norm on topics and document representations; and (¢) impos-
ing 1, norm on topics and 1, norm on document representa-
tions.

Algorithm 1 Regularized Latent Semantic Indexing

Require: D e
1: V@ ¢ RV « random matrix
2:fort=1:Tdo
3: U® < UpdateU(D, V&D)
4: V<« UpdateV(D, U")
5: end for
6: return UD, vD

In Algorithm 1, the term-document matrix D is dimen-
sioned to be an MxN matrix in which each column represents
a document and rows therein represent terms. The topic-
document matrix V is dimensioned to be a KxN matrix and
initialized with random values.

Algorithm 1 is iterative. An updated term-topic matrix U is
determined based at least on the term-document matrix D and
a current topic-document matrix V, then an updated topic-
document matrix V is determined based at least on the term-
document matrix D and the updated term-topic matrix U.

In some embodiments, steps 3 and 4 of Algorithm 1 may be
applied for a set number of iterations.

In other embodiments, steps 3 and 4 may be applied for a
variable number of iterations. For example, after a number of
steps, the topic-document matrix V and/or the term-topic
matrix U may have converged (i.e., an update to the topic-
document matrix V and an update to the term-topic matrix U
may produce changes to the topic-document matrix V and the
term-topic matrix U below a threshold amount) and, after
convergance, steps 3 and 4 are no longer repeated. Conver-
gence may be determined based at least in part on conver-
gance of one or both of the topic-document matrix V, and/or
the term-topic matrix U, the difference between d, and Uv,:
|ld,,~Uv,||,2, and/or the minimization of the Equation 1.

RLSI Optimization: Update of Matrix U

Holding V=[v,, .. ., v,/ fixed, the update of U amounts to
the following optimization problem shown in Equation (2):

2)
[t |,

M K
=1

. 2
min| 1D = OV} +AIZI )
=

where ||*||,- is the Frobenius norm and u,,, is the (mk)” entry
ofU.Letd, =(d,,,,...,d, ) andu, =(u .5, )7 bethe
column vectors whose entries are those of the m” row of D
and U respectively. Thus, Equation (2) can be rewritten as

mls v
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M R M (2a)
min| > (ldp = V@l + 21> 17ll; |-
min me = VTl ; 2l

which can be decomposed into M optimization problems
that can be solved independently, with each corresponding to
one row of U as shown in Equation (3):

©)

. = — 2 -
min(|[dy, = VTl + A1 [17nll, ]
Ym

form=1, ..., M.

Equation (3) is an 1;-regularized least squares problem,
whose objective function is not differentiable and it is not
possible to directly apply gradient-based methods. A number
of'techniques can be used here, such as interior point method,
coordinate descent with soft-thresholding, Lars-Lasso algo-
rithm, and feature-sign search. In some embodiments, coor-
dinate descent with soft-thresholding may be used.

LetVv,=(V,,, - . ., V;)” be the column vector whose entries
are those of the k” row of V, V., the matrix of V¥ with the k”
column removed, and u,,,, the vector of u,, with the k? entry
removed, and we can rewrite the objective function in Equa-
tion (3) as

- - T — 2 -
L(@y) = |dm — Vg T = tic VeIl + A1 1Tl + A letme]

2 115 112 = T T
= U Villz = 2etsc (Ao — Wi Toms)” Vi + At |tk | + comst

2
Uni Sk = Zumk(rmk - Z Skluml] + A1 et | + const,
i+

where s,; and r,; are the (ij)” entries of KxK matrix S=VV7
and MxK matrix R=DV7, respectively, and const is a constant
with respect to u,,,. Then, the minimization over u,,,, is pre-
formed while keeping all theu,,, fixed for which 1=k. Further-
more, [(u,,)is differentiable with respect to u,,, except for the
point u,,,=0. Forcing the partial derivative to be zero leads to

1
(rmk - Z Skluml] - z/\l

+k .
o if wpy >0,
Skk

1
(rmk - Zskluml] + 5/\1

533

Umi =

, 1f ty <0,
Skk

which can be approximated by the following update rule:
1
(rmk - 12#; Skihmt] = 5/\1 ]+Sig“(rmk - 12#; Skluml]

Umi < >
Skk

where (¢), denotes the hinge function. The algorithm for
updating U is summarized in Algorithm 2.
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Algorithm 2 UpdateU

Require: D ERMV, V EREY
1: s < vVl
2: R<=DVT
3: form=1:Mdo
4: u,<0
5:  repeat
6 fork=1:Kdo
7

Wik < Ty = Zge Stillins
8:
2

Stk

1 .
(lwmkl - —/\1] SIg(Woni )
Upg & ——— 2+

9: end for
10:  until convergence
11: end for
12: retumm U

RLSI Optimization: Update of Matrix V

The update of V with U fixed is a least squares problem
with 1, norm regularization. It can also be decomposed into N
optimization problems, with each corresponding to one v,
and can be solved in parallel:

min,, [ld,~Uv, /> +halv, L7,

forn=1,...,N.Itis a standard 1,-regularized least squares
problem (also known as Ridge Regression in statistics) and
the solution is:

v 2=(UTUsD ™ U,

Algorithm 3 shows the procedure. (If K is large such that
the matrix inversion (UZU+A,I)™* is hard, gradient descent in
the update of v,, may be employed.)

Algorithm 3 UpdateV

Require: D e gV, U e RM*K
12 < (UTU + M0t
2:® <UD
3:forn=1:Ndo
4: v, < ¢, where ¢, is the n column of &
5: end for
6: return V

Distributed RLSI: MapReduce

MapReduce is a computing model that supports distributed
computing on large datasets. MapReduce expresses a com-
puting task as a series of Map and Reduce operations and
performs the task by executing the operations in a distributed
computing environment. In some embodiments, RLSI may
be implemented via MapReduce, referred to as Distributed
RLSIL

FIG. 2 is a schematic representation of Distributed RLSI
200. At each iteration, U and V are updated using the follow-
ing MapReduce operations as shown below.

At 202, Map-1, where each iteration involves two map-
pings and Map-1 is the first of the iteration: Broadcast S=VV7
and map R=DV? on m (m=1, . . . , M) such that all of the
entries in the m” row of R are shuffied to the same calculating
unit 204 in the form of { m,r,S), wherer,, is the column vector
whose entries are those of the m” row of R.

At206, Reduce-1, where each iteration involves two reduc-
tions and Reduce-1 is the first reduction of the iteration: Take
(m,r,,,S) and emit {m,u,,), whereu,, is the optimal solution
for the m™ optimization problem (Equation (3)).
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At 208, recombine the solutions to form the U matrix: U=[
u,, ..., u,,]" and store/buffer in storage device 220a.

At 210, calculate Z=(UTU+A,I' )™ and ®=U"D.

At 212, Map-2, broadcast X and map ®=U'D.
n (=1, ...,N) suchthat the entries in the n” column of ® are
shuffled to the same calculating unit 214 in the form of
(n,¢,.2), where ¢,, is the n column of ®.

At 216, Reduce-2, take {n,0,,,%), and emit {n,v,=Z¢, ),
where v, is the optimal solution for the n™ optimization prob-
lem (Equation (3)).

At 218, recombine the solutions to form the V matrix:
V=vy, ..., Vy] and store/butfer in storage device 2205.

At 222, calculate S=VV7 and R=DV7.

The process returns to 202, Map-1, for another iteration. In
some embodiments, the process may be implemented for a set
number of iteration. In other embodiments, the process may
be implemented for a variable number of iterations and may
be ceased based on a convergence.

Note that the data partitioning schemas for R in Map-1 and
for @ in Map-2 are different. R is split such that entries in the
same row (corresponding to one term) are shuffled to the same
calculating unit while @ is split such that entries in the same
column (corresponding to one document) are shuffled to the
same calculating unit.

There are a number of large scale matrix multiplication
operations in operation Map-1 (DV7 and VV?) and Map-2
(U™D and U7U). These matrix multiplication operations can
also be conducted on MapReduce infrastructure efficiently.
As example, DV7 can be calculated as

N
Z dnv?

n=1

and thus fully parallelized.
RLSI: MPI Platforms

RLSI may also be implemented in Message-Passing Inter-
face (MPI) platforms. In this case, the rows of U and columns
of'V can be updated on each of the processors. Algorithm 4
provides an overview, and algorithms 5 and 6 provide the
details for updating U and V on MPI in each iteration, respec-
tively.

Algorithm 4 Parallel RLST using MPI

Require: D eg*V
1: V@ & R®Y « random matrix
2:fort=1:Tdo
3: U® < MPI-UpdateU(D, V¢ 1)
4: V® «— MPI-UpdateV(D, U®)
5: end for
6: return UD, vD

Algorithm 5 MPI-UpdateU

Require: D ERMY, v ERFV

1: Calculate S < VV7T and R < DV7 in parallel

: Assign rows of R to P processors such that r,,, is assigned to
processor [m/P|

cforp=0:P-1do

Load S on processor p

Load assigned 1,,, into R = [r /7, . ..

forj=1:Jdo

Ko

- - ,o=
, 17], whete 1,007 =1,

[ R N

w
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-continued

Algorithm 5 MPI-UpdateU

7: u; <0
8: repeat
9: fork=1:Kdo
10: Wit < T = Zpap Sl
11: 1 )
(|ij| - 5/\1) sign(w )
+
Uy & ———————
! Sk
12: end for
13: until convergence
14:  end for
15: =[upg,...,u7]"
16: end for
17: Synchronize
18: U< [UY ... UL
19: return U

Algorithm 6 MPI-UpdateV

Require: D eR¥, U e g

1: Caleulate = < (UTU + AI) ! and @ < U?D in parallel

2: Assign columns of @ to P processors such that ¢, is assigned
to processor |n/P |

3iforp=0:P-1do

4: Load = on processor p
5: Load assigned ¢,’s into &7 = [¢p /7, ... , pF], where q)(,,%P)P =
6: forq=1:Qdo
7: vy < Zpf
8: end for
9 VP=[v/ .., vg]
10: end for

11: Synchronize
12:V = [V, .., V7).
13: return V

In some embodiments, the algorithms may be imple-
mented for a set number of iterations.

In other embodiments, the algorithms may be implemented
for a variable number of iterations and may be ceased based
on aconvergence. For example, the algorithms may be ceased
based at least in part on convergance of one or both of the
topic-document matrix V, and/or the term-topic matrix U.
Alternatively, the algorithms may be ceased based on conver-
gance of the difference between d,, and Uv,|[d,-Uv,|,>.
Alternatively, the algorithms may be ceased based on conver-
gance of the minimization of Equation (1).

Online Learning for RLSI

In some embodiments, RL.SI may employed for on-line
learning of documents. Given a text collection D={d,, . . .,
d,}, the RLSI loss function may be written as shown in
Equation (4):

1 N K
[lldy = Uvl3 + Aallvil13] + A0 Nl |
=1 k=1

“)
min |—
Ut} | N

n

where A, 20 is the parameter controlling the regularization
on uy: the larger value of A, the more sparse u,; and A, =0 is
the parameter controlling the regularization on v,: the larger
value of A, the larger amount of shrinkage on v,,.

In this implimentation, a training set is composed of inde-
pendent and identically distributed (i.i.d.) samples of a distri-
bution p(d). Documents are drawn one document d,, at a time,






