
Regularized Latent Semantic Indexing

Quan Wang
MOE-Microsoft Key Laboratory of
Statistics&Information Technology

Peking University, China
v-quwan@microsoft.com

Jun Xu, Hang Li
Microsoft Research Asia

No. 5 Danling Street
Beijing, China

{junxu,hangli}@microsoft.com

Nick Craswell
Microsoft

Bellevue, Washington, USA
nickcr@microsoft.com

ABSTRACT
Topic modeling can boost the performance of information retrieval,
but its real-world application is limited due to scalability issues.
Scaling to larger document collections via parallelization is an ac-
tive area of research, but most solutions require drastic steps such
as vastly reducing input vocabulary. We introduce Regularized La-
tent Semantic Indexing (RLSI), a new method which is designed
for parallelization. It is as effective as existing topic models, and
scales to larger datasets without reducing input vocabulary. RLSI
formalizes topic modeling as a problem of minimizing a quadratic
loss function regularized by ℓ1 and/or ℓ2 norm. This formulation
allows the learning process to be decomposed into multiple sub-
optimization problems which can be optimized in parallel, for ex-
ample via MapReduce. We particularly propose adopting ℓ1 norm
on topics and ℓ2 norm on document representations, to create a
model with compact and readable topics and useful for retrieval.
Relevance ranking experiments on three TREC datasets show that
RLSI performs better than LSI, PLSI, and LDA, and the improve-
ments are sometimes statistically significant. Experiments on a
web dataset, containing about 1.6 million documents and 7 mil-
lion terms, demonstrate a similar boost in performance on a larger
corpus and vocabulary than in previous studies.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Content Analysis and
Indexing

General Terms
Experimentation

Keywords
Topic Modeling, Regularization, Sparse Methods

1. INTRODUCTION
Recent years have seen significant progress on topic modeling

technologies in machine learning, information retrieval, natural lan-
guage processing, and other related fields. Given a collection of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’11, July 24–28, 2011, Beijing, China.
Copyright 2011 ACM 978-1-4503-0757-4/11/07 ...$10.00.

text documents, a topic model represents the relationship between
terms and documents through latent topics. A topic is defined as
a probability distribution of terms or a cluster of weighted terms.
A document is then viewed as a bag of terms generated from a
mixture of latent topics. Various topic modeling methods, such as
Latent Semantic Indexing (LSI) [10], Probabilistic Latent Seman-
tic Indexing (PLSI) [16], and Latent Dirichlet Allocation (LDA) [3]
have been proposed and successfully applied in various settings.

One of the main challenges in topic modeling is scaling to mil-
lions or even billions of documents while maintaining a representa-
tive vocabulary of terms, which is necessary in many applications
such as web search. A typical approach is to approximate the learn-
ing processes of an existing topic model.

In this work, instead of modifying existing methods, we intro-
duce a new topic modeling method that is intrinsically scalable:
Regularized Latent Semantic Indexing (RLSI). Topic modeling is
formalized as minimization of a quadratic loss function on term-
document occurrences regularized by ℓ1 and/or ℓ2 norm. Specifi-
cally, in RLSI the text collection is represented as a term-document
matrix, where each entry represents the occurrence (or tf-idf score)
of a term in a document. The term-document matrix is then ap-
proximated by the product of two matrices: the term-topic ma-
trix which represents the latent topics with terms and the topic-
document matrix which represents the documents with topics. Fi-
nally, the quadratic loss function is defined as the squared Frobe-
nius norm of the difference between the term-document matrix and
the output of the topic model. Both ℓ1 norm and ℓ2 norm may be
used for regularization. We particularly propose using ℓ1 norm on
topics and ℓ2 norm on document representations, which can result
in a model with compact and readable topics and useful for re-
trieval. Note that we call our new method RLSI because it makes
use of the same quadratic loss function as LSI. RLSI differs from
LSI in that it uses regularization rather than orthogonality to con-
strain the solutions.

The learning process of RLSI iteratively updates the term-topic
matrix given the fixed topic-document matrix, and updates the topic-
document matrix given the fixed term-topic matrix. The formula-
tion of RLSI makes it possible to decompose the learning problem
into multiple sub-optimization problems and conduct learning in
parallel. Specifically, for both the term-topic matrix and the topic-
document matrix, the update in each iteration is decomposed into
many sub-optimization problems. These may be run in parallel,
which is the main reason that RLSI can scale up. We describe our
implementation of RLSI in MapReduce [9]. The MapReduce sys-
tem maps the sub-optimization problems over multiple processors
and then merges (reduces) the results from the processors. During
this process, documents and terms are distributed and processed
automatically.

For probabilistic topic models like LDA and PLSI, the scalability
challenge mainly comes from the necessity of simultaneously up-
dating the term-topic matrix to meet the probability distribution as-
sumptions. When the number of terms is large, which is inevitable
in real applications, this problem becomes particularly severe. For
LSI, the challenge is due to the orthogonality assumption in the for-
mulation, and as a result the problem needs to be solved by Singular
Value Decomposition (SVD) and thus is hard to be parallelized.

Regularization is a well-known technique in machine learning.
In our setting, if we employed ℓ2 norm on topics and ℓ1 norm on
document representations, RLSI becomes Sparse Coding [19, 25],
which is a method used in computer vision and other fields. As far
as we know, regularization for topic modeling has not been widely
studied, in terms of the performance of different norms or their scal-
ability advantages.

Experimental results on a large web dataset show that 1) RLSI
can scale up well and help improve search relevance. Specifically,
we show that RLSI can efficiently run on 1.6 million documents
and 7 million terms on 16 distributed machines. In contrast, exist-
ing methods on parallelizing LDA were demonstrated on far fewer
documents and/or far fewer terms. Experiments on three TREC
datasets show that 2) The readability and coherence of RLSI top-
ics is equal or better than those learned by LDA, PLSI and LSI. 3)
RLSI topics can be used in retrieval with better performance than
LDA, PLSI, and LSI (sometimes statistically significant). 4) The
best choice of regularization is ℓ1 on topics and ℓ2 on document rep-
resentations in terms of topic readability and retrieval performance.

2. RELATED WORK
Studies on topic modeling fall into two categories: probabilistic

approaches and non-probabilistic (matrix factorization) approaches.
In the probabilistic approaches, a topic is defined as a probability
distribution over terms and documents are defined as data gener-
ated from mixtures of topics. To generate a document, one chooses
a distribution over topics. Then, for each term in that document,
one chooses a topic according to the topic distribution, and draws a
term from the topic according to its term distribution. For example,
PLSI [16] and LDA [3] are two widely-used generative models. In
the non-probabilistic approaches, the term-document matrix is pro-
jected into a K-dimensional topic space in which each axis corre-
sponds to a topic. In the topic space, each document is represented
as a linear combination of the K topics. LSI [10] is a representative
non-probabilistic model. It decomposes the term-document matrix
with SVD under the assumption that topics are orthogonal. See
also Non-negative Matrix Factorization (NMF) [17, 18] and Sparse
Coding methods [19, 25].

It has been demonstrated that topic modeling is useful for knowl-
edge discovery, relevance ranking in search, and document classifi-
cation [23, 35]. In fact, topic modeling is becoming one of impor-
tant technologies in machine learning, information retrieval, and
other related fields.

Most efforts to improve topic modeling scalability have modi-
fied existing learning methods, such as LDA. Newman, et al. [24]
proposed Approximate Distributed LDA (AD-LDA), in which each
processor performs a local Gibbs sampling iteration followed by a
global update. Two recent papers implemented AD-LDA as PLDA
[34] and modified AD-LDA as PLDA+ [21], using MPI [32] and
MapReduce [9]. In [2], the authors proposed purely asynchronous
distributed LDA algorithms based on Gibbs Sampling or Bayesian
inference, called Async-CGB or Async-CVB, respectively. In Async-
CGB and Async-CVB, each processor performs a local computa-
tion step followed by a step of communicating with other proces-
sors. In all the methods, the local processors need to maintain and

update a dense term-topic matrix, usually in memory, which be-
comes a bottleneck for improving the scalability. In this paper, we
propose a new topic model learning algorithm which can efficiently
scale up to large text corpora. The key ingredient of our method is
to make the formulation of learning decomposable and thus make
the process of learning parallelizable. In [1, 15], online versions
of stochastic LDA were proposed. In this paper, we consider batch
learning of topic models, which is a different setting from online
learning. For other related work refer to [23, 31, 36].

Regularization is a common technique in machine learning to
prevent over-fitting. Typical examples of regularization in machine
learning include the use of ℓ1 and ℓ2 norms. Regularization via ℓ1
norm uses the sum of absolute values of parameters and thus has
the effect of causing many parameters to be zero and selecting a
sparse model as solution [14, 26]. Regularization via ℓ2 norm, on
the other hand, uses the sum of squares of parameters and thus can
make a smooth regularization and effectively deal with over-fitting.

Sparse methods have recently received a lot of attention in ma-
chine learning community. They aim to learn sparse representa-
tions (simple models) hidden in the input data by using ℓ1 norm reg-
ularization. Sparse Coding algorithms [19, 25] are proposed which
can be used for discovering basis functions, to capture meta-level
features in the input data. One justification to the sparse methods
is that human brains have similar sparse mechanism for informa-
tion processing. For example, when Sparse Coding algorithms are
applied to natural images, the learned bases resemble the receptive
fields of neurons in the visual cortex [25]. Previous work on sparse
methods mainly focused on image processing (e.g., [28]). In this
paper we propose using sparse methods (ℓ1 norm regularization) in
topic modeling, particularly to make the learned topics sparse. The
use of sparse methods for topic modeling was also proposed very
recently by Chen et al. [8]. Their motivation was not to improve
scalability and they made an orthogonality assumption (requiring
an SVD). In [33], the authors also proposed to discover sparse top-
ics based on a modified version of LDA.

3. SCALABILITY OF TOPIC MODELS
One of the key problems in topic modeling is to improve scala-

bility, to handle millions of documents or even more. As collection
size increases, so does vocabulary size, rather than a maximum vo-
cabulary being reached. For example, in the 1.6 million web doc-
uments in our experiment, there are more than 7 million unique
terms even after pruning the low frequency ones (e.g., with term
frequency in the whole collection less than 2). This means that
both matrices, term-topic and topic-document, grow as the number
of documents increases.

LSI needs to be solved by SVD due to the orthogonality assump-
tion. The time complexity of computing SVD is normally of order
O(min{MN2,NM2}), where M denotes number of rows of the in-
put matrix and N number of columns. Thus, it appears to be very
difficult to make LSI scalable and efficient.

For PLSI and LDA, it is necessary to maintain the probability
distribution constraints of the term-topic matrix. When the matrix
is large, there is a cost for maintaining the probabilistic framework.
One possible solution is to reduce the number of terms, but the
negative consequence is that it can sacrifice learning accuracy.

How to make existing topic modeling methods scalable is still a
challenging problem. In this paper, we adopt a different approach,
that is, to develop new methods which can work equally well or
even better, but are scalable by design.

4. RLSI

Table 1: Table of notations.
Notation Meaning
M Number of terms in vocabulary
N Number of documents in collection
K Number of topics
D ∈ RM×N Term-document matrix [d1, · · · , dN]
dn The nth document
dmn Weight of the mth term in document dn
U ∈ RM×K Term-topic matrix [u1, · · · ,uK]
uk The kth topic
umk Weight of the mth term in topic uk
V ∈ RK×N Topic-document matrix [v1, · · · , vN]
vn Representation of dn in the topic space
vkn Weight of the kth topic in vn

4.1 Problem Formulation
We are given a set of documentsDwith size N, containing terms

from a vocabulary V with size M. A document is simply repre-
sented as an M-dimensional vector d, where the mth entry denotes
the score of the mth term, for example, a Boolean value indicating
occurrence, term frequency, tf-idf, or joint probability of the term
and document. The N documents in D are then represented in an
M×N term-document matrix D = [d1, · · · , dN], in which each row
corresponds to a term and each column corresponds to a document.

A topic is defined over terms in the vocabulary and is also repre-
sented as an M-dimensional vector u, where the mth entry denotes
the weight of the mth term in the topic. Intuitively, the terms with
larger weights are more indicative to the topic. Suppose that there
are K topics in the collection. The K topics can be summarized
into an M × K term-topic matrix U = [u1, · · · , uK], in which each
column corresponds to a topic.

Topic modeling means discovering the latent topics in the doc-
ument collection as well as modeling the documents by represent-
ing them as mixtures of the topics. More precisely, given topics
u1, · · · ,uK , document dn is succinctly represented as dn ≈

∑K
k=1 vknuk =

Uvn, where vkn denotes the weight of the kth topic uk in document
dn. The larger value of vkn, the more important role topic uk plays
in the document. Let V = [v1, · · · , vN] be the topic-document ma-
trix, where column vn stands for the representation of document dn

in the latent topic space. Table 1 gives a summary of notations.
Different topic modeling techniques choose different schemas to

model matrices U and V and impose different constraints on them.
For example, in the generative topic models such as PLSI and LDA,
u1, · · · ,uK are probability distributions so that

∑M
m=1 umk = 1 for

k = 1, · · · ,K; In LSI, topics u1, · · · , uK are orthogonal and thus
SVD can be applied.

Regularized Latent Semantic Indexing (RLSI) learns latent top-
ics as well as representations of documents from the given text col-
lections in the following way.

Document dn is approximated as Uvn where U is the term-topic
matrix and vn is the representation of dn in the latent topic space.
The goodness of the approximation is measured by the squared ℓ2
norm of the difference between dn and Uvn : ∥dn − Uvn∥22. Further-
more, regularization is made on topics and document representa-
tions. Specifically, we suggest ℓ1 norm regularization on term-topic
matrix U (i.e., topics u1, · · · ,uK) and ℓ2 on topic-document matrix
V (i.e., document representations v1, · · · , vN) to favor a model with
compact and readable topics and useful for retrieval.

Thus, given a text collectionD = {d1, . . . , dN}, RLSI amounts to
solving the following optimization problem:

min
U,{vn}

N∑
n=1

∥dn − Uvn∥22 + λ1

K∑
k=1

∥uk∥1 + λ2

N∑
n=1

∥vn∥22 , (1)

Algorithm 1 Regularized Latent Semantic Indexing
Require: D ∈ RM×N

1: V(0) ∈ RK×N ← random matrix
2: for t = 1 : T do
3: U(t) ← UpdateU(D,V(t−1))
4: V(t) ← UpdateV(D,U(t))
5: end for
6: return U(T),V(T)

where λ1 ≥ 0 is the parameter controlling the regularization on
uk: the larger value of λ1, the more sparse uk; and λ2 ≥ 0 is the
parameter controlling the regularization on vn: the larger value of
λ2, the larger amount of shrinkage on vn.

In general, the regularization on topics and document represen-
tations (the second term and the third term) can be either ℓ1 norm
or ℓ2 norm. When they are ℓ2 and ℓ1 respectively, the method is
equivalent to Sparse Coding [19, 25]. When both of them are ℓ1,
the model is similar to the double sparse model proposed in [28]1.

4.2 Regularization Strategy
We propose using the formulation above (i.e., regularization via

ℓ1 norm on topics and ℓ2 norm on document representations), be-
cause in our experience this regularization strategy leads to a model
with compact and readable topics and useful for retrieval.

First, ℓ1 norm regularization on topics has the effect of making
them compact. We do this under the assumption that the essence
of a topic can be captured via a small number of terms, which is
reasonable in practice. In many applications, small and concise
topics are more useful. For example, small topics can be interpreted
as sets of synonyms, roughly corresponding to the WordNet synsets
used in natural language processing.

Second, ℓ1 norm can make the topics readable, no matter whether
it is imposed on topics or document representations, according to
our experiments. This has advantages in applications such as text
summarization and visualization.

Third, there are four ways of combining ℓ1 and ℓ2 norms. We per-
form retrieval experiments across multiple test collections, showing
that better ranking performance is achieved with ℓ1 norm on topics
and ℓ2 norm on document representations.

Last, in both learning and using of topic models, topic sparsity
means that we can efficiently store and process topics. We can also
leverage existing techniques on sparse matrix computation [4, 20],
which are efficient and scalable.

4.3 Optimization
The optimization Eq. (1) is convex with respect to U when V

is fixed and convex with respect to V when U is fixed. However,
it is not convex with respect to both of them. Following the prac-
tice in Sparse Coding [19], we optimize the function in Eq. (1) by
alternately minimizing it with respect to term-topic matrix U and
topic-document matrix V. This procedure is summarized in Algo-
rithm 1. Note that for simplicity we describe the algorithm when
ℓ1 norm is imposed on topics and ℓ2 norm on document representa-
tions; one can easily extend it to other regularization strategies.

4.3.1 Update of Matrix U
Holding V = [v1, · · · , vN] fixed, the update of U amounts to the

1Note that both Sparse Coding and double sparse model formulate
optimization problems in constrained forms instead of regularized
forms. The two forms are equivalent.

following optimization problem:

min
U
∥D − UV∥2F + λ1

M∑
m=1

K∑
k=1

|umk | , (2)

where ∥ · ∥F is the Frobenius norm and umk is the (mk)th entry of
U. Let d̄m = (dm1, · · · , dmN)T and ūm = (um1, · · · , umK)T be the
column vectors whose entries are those of the mth row of D and U
respectively. Thus, Eq. (2) can be rewritten as

min
{ūm}

M∑
m=1

∥∥∥d̄m − VT ūm

∥∥∥2
2
+ λ1

M∑
m=1

∥ūm∥1 ,

which can be decomposed into M optimization problems that can
be solved independently, with each corresponding to one row of U:

min
ūm

∥∥∥d̄m − VT ūm

∥∥∥2
2
+ λ1 ∥ūm∥1 , (3)

for m = 1, · · · ,M.
Eq. (3) is an ℓ1-regularized least squares problem, whose ob-

jective function is not differentiable and it is not possible to di-
rectly apply gradient-based methods. A number of techniques can
be used here, such as interior point method [7], coordinate descent
with soft-thresholding [13, 14], Lars-Lasso algorithm [12, 26], and
feature-sign search [19]. Here we choose coordinate descent with
soft-thresholding.

Let v̄k = (vk1, · · · , vkN)T be the column vector whose entries are
those of the kth row of V, VT

\k the matrix of VT with the kth column
removed, and ūm\k the vector of ūm with the kth entry removed, and
we can rewrite the objective function in Eq.(3) as

L (ūm) =
∥∥∥d̄m − VT

\kūm\k − umk v̄k

∥∥∥2
2
+ λ1

∥∥∥ūm\k
∥∥∥

1
+ λ1 |umk |

=u2
mk ∥v̄k∥22 − 2umk

(
d̄m − VT

\kūm\k
)T

v̄k + λ1 |umk | + const

=u2
mk skk − 2umk

rmk −
∑
l,k

skluml

 + λ1 |umk | + const,

where si j and ri j are the (i j)th entries of K ×K matrix S = VVT and
M × K matrix R = DVT , respectively, and const is a constant with
respect to umk. Then, we can conduct the minimization over umk

while keeping all the uml fixed for which l , k. Furthermore, L (ūm)
is differentiable with respect to umk except for the point umk = 0.
Forcing the partial derivative to be zero leads to

umk =


(
rmk −

∑
l,k skluml

) − 1
2λ1

skk
, if umk > 0,(

rmk −
∑

l,k skluml
)
+ 1

2λ1

skk
, if umk < 0,

which can be approximated by the following update rule:

umk ←

(∣∣∣rmk −
∑

l,k skluml

∣∣∣ − 1
2λ1

)
+

sign
(
rmk −

∑
l,k skluml

)
skk

,

where (·)+ denotes the hinge function. The algorithm for updating
U is summarized in Algorithm 2.

4.3.2 Update of Matrix V
The update of V with U fixed is a least squares problem with
ℓ2 norm regularization. It can also be decomposed into N opti-
mization problems, with each corresponding to one vn and can be
solved in parallel:

min
vn
∥dn − Uvn∥22 + λ2 ∥vn∥22 ,

Algorithm 2 UpdateU
Require: D ∈ RM×N , V ∈ RK×N

1: S← VVT

2: R← DVT

3: for m = 1 : M do
4: ūm ← 0
5: repeat
6: for k = 1 : K do
7: wmk ← rmk −

∑
l,k skluml

8: umk ← (|wmk |− 1
2 λ1)+sign(wmk)

skk
9: end for

10: until convergence
11: end for
12: return U

Algorithm 3 UpdateV
Require: D ∈ RM×N , U ∈ RM×K

1: Σ←
(
UT U + λ2I

)−1

2: Φ← UT D
3: for n = 1 : N do
4: vn ← Σϕn, where ϕn is the nth column of Φ
5: end for
6: return V

for n = 1, · · · ,N. It is a standard ℓ2-regularized least squares prob-
lem (also known as Ridge Regression in statistics) and the solution is:

v∗n =
(
UT U + λ2I

)−1
UT dn.

Algorithm 3 shows the procedure2.

4.4 Implementation on MapReduce
MapReduce [9] is a computing model that supports distributed

computing on large datasets. MapReduce expresses a computing
task as a series of Map and Reduce operations and performs the task
by executing the operations in a distributed computing environ-
ment. In this paper, we implement RLSI on MapReduce, referred to
as Distributed RLSI, as shown in Figure 1. At each iteration the al-
gorithm updates U and V using the following MapReduce operations:

Map-1 Broadcast S = VVT and map R = DVT on m (m = 1, · · · ,M)
such that all of the entries in the mth row of R are shuffled to
the same machine in the form of ⟨m, r̄m, S⟩, where r̄m is the
column vector whose entries are those of the mth row of R.

Reduce-1 Take ⟨m, r̄m, S⟩ and emit ⟨m, ūm⟩, where ūm is the opti-
mal solution for the mth optimization problem (Eq. (3)). We
have U = [ū1, · · · , ūM]T .

Map-2 Broadcast Σ =
(
UT U + λ2I

)−1
and map Φ = UT D on n

(n = 1, · · · ,N) such that the entries in the nth column of Φ
are shuffled to the same machine in the form of

⟨
n,ϕn,Σ

⟩
,

where ϕn is the nth column of Φ.

Reduce-2 Take
⟨
n,ϕn,Σ

⟩
and emit

⟨
n, vn = Σϕn

⟩
. We have V =

[v1, · · · , vN].

Note that the data partitioning schemas for R in Map-1 and forΦ
in Map-2 are different. R is split such that entries in the same row

2If K is large such that the matrix inversion
(
UT U + λ2I

)−1
is hard,

we can employ gradient descent in the update of vn.

R=DVT),(: mm rR

S=VVT),(: SS m

...

Sr ,, mm
V

Map-1 Reduce-1

Φ:(n, ϕn)
Φ=UTD

Σ=(UTU+λ2I)-1
Σ:(n, Σ)

...

Reduce-2 Map-2

U

Σ,,
n

n φ

Figure 1: Update of U and V on MapReduce.

(corresponding to one term) are shuffled to the same machine while
Φ is split such that entries in the same column (corresponding to
one document) are shuffled to the same machine.

There are a number of large scale matrix multiplication opera-
tions in operation Map-1 (DVT and VVT) and Map-2 (UT D and
UT U). These matrix multiplication operations can also be con-
ducted on MapReduce infrastructure efficiently. As example, DVT

can be calculated as
∑N

n=1 dnvT
n and thus fully parallelized. For de-

tails please refer to [4, 20].

4.5 Discussion
We discuss the properties of RLSI with ℓ1 norm on U and ℓ2

norm on V as example.

4.5.1 Relationship with Other Methods
Despite having better scalability properties, RLSI is closely re-

lated to existing topic modeling methods such as LSI, PLSI, and
Sparse Coding. In [30], the relationship between LSI and PLSI are
discussed, from the view point of loss function and regularization.
We describe their framework, so we can describe RLSI in the con-
text of existing approaches. In that framework, topic modeling is
considered as a problem of optimizing the following general loss
function

min
(U,V)∈C

B (D||UV) + λR (U,V) ,

where B(·∥·) is generalized Bregman divergence with non-negative
values and is equal to zero if and only if the two inputs are equiv-
alent; R(·, ·) ≥ 0 is the regularization on the two inputs; C is the
solution space; and λ is a coefficient making trade-off between the
divergence and regularization.

Different choices of B, R, and C lead to different topic modeling
techniques. Table 2 shows the relationship between RLSI and ex-
isting methods of LSI, PLSI, and Sparse Coding. (Suppose that we
first conduct normalization

∑
m,n dmn = 1 in PLSI [11].) Viewing

topic modeling methods in this framework, the major question is
how to conduct regularization as well as optimization to make the
learned topics coherent and readable.

4.5.2 Probabilistic and Non-probabilistic Models
Many non-probabilistic topic modeling techniques, such as LSI,

Sparse Coding, and RLSI can be translated into a probabilistic
framework, as shown in Figure 2.

In the probabilistic framework, columns of the term-topic matrix
uk’s are assumed to be independent from each other and columns
of the topic-document matrix vn’s are regarded as latent variables.

U dn vn

n = 1, …, N

Figure 2: Probabilistic framework for non-probabilistic methods.

Table 3: Priors/constraints in different non-probabilistic methods.
Method Prior/Constraint on uk Prior/Constraint on vn

LSI orthonormality orthogonality
Sparse Coding ∥uk∥22 ≤ 1 p (vn) ∝ exp (−λ ∥vn∥1)
RLSI p (uk) ∝ exp (−λ1 ∥uk∥1) p (vn) ∝ exp

(
−λ2 ∥vn∥22

)

Next, each document dn is assumed to be generated according to a
Gaussian distribution conditioned on U and vn, i.e., p (dn|U, vn) ∝
exp
(
− ∥dn − Uvn∥22

)
. Furthermore, all the pairs (dn, vn) are condi-

tionally independent given U.
Different techniques use different priors or constraints on uk’s

and vn’s. Table 3 lists the priors or constraints used in LSI, Sparse
Coding, and RLSI, respectively. It can be shown that LSI, Sparse
Coding, and RLSI can be obtained with Maximum A Posteriori
(MAP) Estimation [22]. That is to say, the techniques can be un-
derstood in the same framework.

4.5.3 Scalability Comparison
As explained, several methods for improving the efficiency and

scalability of existing topic models, especially LDA have been pro-
posed. Table 4 shows the space and time complexities of AD-LDA
[24], Async-CBS, Async-CVB [2], and Distributed RLSI, where
AvgDL is the average document length in the collection and γ is
the sparsity of topics.

The space complexity of AD-LDA (also Async-CGS and Async-
CVB) is of order N×AvgDL+NK

P + MK, where MK is for storing the
term-topic matrix on each processor. For a large text collection, the
vocabulary size M will be very large and thus the space complexity
will be very high. This will hinder it from being applied to large
datasets in real applications.

The space complexity of Distributed RLSI is N×AvgDL+(1+γ)MK+2NK
P +

K2 for updating U and V, where K2 is for storing S or Σ, (1+γ)MK
P is

for storing U and R in P processors, and 2NK
P is for storing V andΦ

in P processors. Since K ≪ M, it is clear that Distributed RLSI has
better scalability. We can reach the same conclusion when compar-
ing Distributed RLSI with other parallel/distributed topic modeling
methods. The key is that Distributed RLSI can distribute both terms
and documents over P processors. The sparsity on the term-topic
matrix can also help save the space in each processor.

The time complexities of different topic modeling methods are
also listed. For Distributed RLSI, I is the number of inner itera-
tions in Algorithm 2; TU and TV are for the matrix operations in
Algorithms 2 and 3 (e.g., VVT , DVT , UT U, UT D, and matrix inver-
sion), respectively:

TU = max
{

AvgDL × NK
P

+ nnz(R) log P,
NK2

P
+ K2 log P

}
,

TV = max
{

AvgDL × γNK
P

+ nnz(Φ) log P,
M(γK)2

P
+ K2 log P + K3

}
,

where nnz(·) is the number of nonzero entries in the input matrix.
For details please refer to [20]. Note that the time complexities of
these methods are comparable.

5. RELEVANCE RANKING

Table 2: Optimization framework for different topic modeling methods.
Method B (D||UV) R (U,V) Constraint on U Constraint on V
LSI ∥D − UV∥2F — UT U = I VVT = Λ2 (Λ is diagonal)
PLSI

∑
mn

(
dmn log dmn

(UV)mn

)
— UT 1 = 1, umk ≥ 0 1T V1 = 1, vkn ≥ 0

Sparse Coding ∥D − UV∥2F
∑

n ∥vn∥1 ∥uk∥22 ≤ 1 —
RLSI ∥D − UV∥2F

∑
k ∥uk∥1,

∑
n ∥vn∥22 — —

Table 4: Complexity of parallel/distributed topic models.
Method Space complexity Time complexity (per iter)

AD-LDA N×AvgDL+NK
P + MK NK×AvgDL

P + MK log P
Async-CGS N×AvgDL+NK

P + 2MK NK×AvgDL
P + MK log P

Async-CVB N×AvgDL+2NK
P + 4MK MK

P + MK log P
Distributed RLSI N×AvgDL+(1+γ)MK+2NK

P + K2 IMK2+NK2

P + TU + TV

Topic models can be used in a wide variety of applications. We
apply RLSI to relevance ranking in information retrieval (IR) and
evaluate its performance in comparison to existing topic modeling
methods. The use of topic modeling techniques such as LSI was
proposed in IR many years ago [10]. A more recent paper [35]
demonstrated improvements in retrieval performance by applying
topic modeling on modern test collections. We do not replicate
their precise ranking approach here, since it relies on a probabilistic
topic model, but we achieve similar gains.

The advantage of incorporating topic modeling in relevance rank-
ing is to reduce “term mismatch”. Traditional relevance models,
such as VSM [29] and BM25 [27], are all based on term match-
ing. The term mismatch problem arises when the authors of docu-
ments and the users of search system use different terms to describe
the same concepts, and thus relevant documents get low relevance
scores. For example, if a query contains the term “airplane” but a
relevant document instead contains the term “aircraft”, then there
is a mismatch and the document may not be easily distinguished
from an irrelevant one. In the topic space, however, it is very likely
that the two terms are in the same topic, and thus the use of match-
ing score in the topic space can help improve relevance ranking.
In practice it is beneficial to combine topic matching scores with
term matching scores, to leverage both broad topic matching and
specific term matching.

To do so, given a query and document, we must calculate their
matching scores in both term space and topic space. For query q,
we represent it in the topic space:

vq = arg min
v
∥q − Uv∥22 + λ2∥v∥22,

where vector q is the tf-idf representation of query q in the term
space3. Similarly, for document d (and its tf-idf representation d
in the term space) we represent it in the topic space as vd. The
matching score between the query and the document in the topic
space is, then, calculated as the cosine similarity between vq and vd:

stopic(q, d) =
⟨vq, vd⟩

∥vq∥2 · ∥vd∥2
. (4)

The topic matching score stopic(q, d) is combined with the con-
ventional term matching score sterm(q, d), for final relevance rank-
ing. There are several ways to conduct the combination. A simple
and effective approach is to use a linear combination. The final
relevance ranking score s(q, d) is:

s(q, d) = αstopic(q, d) + (1 − α)sterm(q, d), (5)
3Using vq = arg minv ∥q−Uv∥22+λ2∥v∥1 if ℓ1 norm is imposed on V

where α ∈ [0, 1] is the coefficient. sterm(q, d) can be calculated with
any of the conventional relevance models such as VSM and BM25.

Another combination approach is to incorporate the topic match-
ing score as a feature in a learning to rank model, e.g., LambdaRank
[5]. In this paper, we use both approaches in our experiments.

6. EXPERIMENTS
We have conducted experiments to compare different RLSI reg-

ularization strategies, to compare RLSI with existing methods, and
to test scalability and retrieval performance of RLSI using several
datasets.

6.1 Experimental Settings
Our three TREC datasets were AP, WSJ, and OHSUMED, which

have been widely used in relevance ranking experiments. We also
used a large real-world web dataset from a commercial web search
engine, containing about 1.6 million documents and 10 thousand
queries. Each dataset consists of a document collection, a set of
queries, and relevance judgments on some documents with respect
to each query. For all four datasets, only the retrieved documents
were included and a standard list of stop words was removed. For
the Web dataset, we further discarded the terms whose frequencies
in the whole dataset are less than two. Table 5 gives some statistics
on the datasets.

In AP and WSJ the relevance judgments are at two levels: “rel-
evant” or “irrelevant”. In OHSUMED, the relevance judgments
are at three levels: “definitely relevant”, “partially relevant”, and
“not relevant”. In the Web dataset, there are five levels: “perfect”,
“excellent”, “good”, “fair”, and “bad”. In the experiments of re-
trieval performance, we used MAP and NDCG at the positions of
1, 3, 5, and 10 for evaluating retrieval performance. In calculating
MAP, we consider “definitely relevant” and “partially relevant” in
OHSUMED, and “perfect”, “excellent”, and “good” in Web dataset
as “relevant”.

In the experiments on TREC datasets (Section 6.2 and Section
6.3), no validation set was used since we only had small query sets,
making it difficult to hold out a validation set of meaningful size
in each case. Instead, we chose to evaluate each model in a pre-
defined grid of parameters, showing its performance under the best
parameter choices. In the experiments on the Web dateset (Section
6.4), the queries were randomly split into training/validation/test
sets, with 6000/2000/2680 queries, respectively. We trained the
ranking models with the training set, selected the best models with
the validation set, and evaluated the performances of the methods
with the test set.

The experiments on AP, WSJ, and OHSUMED were conducted
on a server with Intel Xeon 2.33GHZ CPU, 16GB RAM. The ex-
periments on the Web dataset were conducted on a distributed sys-
tem and the Distributed RLSI was implemented with SCOPE lan-
guage [6].

6.2 Regularization in RLSI
Our comparison of different RLSI regularization strategies was

carried out on AP, WSJ, and OHSUMED datasets. Regulariza-

Table 5: Dataset statistics.
Dataset AP WSJ OHSUMED Web dataset
terms 83,541 106,029 26,457 7,014,881
documents 29,528 45,305 14,430 1,562,807
queries 250 250 106 10,680

tion on U and V via either ℓ1 or ℓ2 norm gives us four RLSI vari-
ants: RLSI (Uℓ1-Vℓ2), RLSI (Uℓ2-Vℓ1), RLSI (Uℓ1-Vℓ1), and RLSI
(Uℓ2-Vℓ2), where RLSI (Uℓ1-Vℓ2) means, for example, applying ℓ1
norm on U and ℓ2 norm on V. Parameters K, λ1, λ2, and α were re-
spectively set in ranges of [10, 50], [0.01, 1], [0.01, 1], and [0.1, 1]
for all variants.

We first compared the RLSI variants in terms of topic readabil-
ity, by looking at the contents of topics they generated. As example,
Table 6 shows 10 topics (randomly selected) and the average topic
compactness (AvgComp) on AP dataset, for all four RLSI variants,
when K = 20 and λ1 and λ2 are the optimal parameters for the re-
trieval experiment described next. Here, average topic compactness
is defined as average ratio of terms with non-zero weights per topic.
For each topic, its top 5 weighted terms are shown. From the re-
sults, we have found that 1) If ℓ1 norm is imposed on either U or V,
RLSI can always discover readable topics; 2) Without ℓ1 norm reg-
ularization (i.e., RLSI(Uℓ2-Vℓ2)), many topics are not readable;
3) If ℓ1 norm is only imposed on V (i.e. RLSI (Uℓ2-Vℓ1)), then the
discovered topics are not compact or sparse (e.g., AvgComp = 1).
We also conducted the same experiments on WSJ and OHSUMED
and observed similar phenomena. The examining topics on them
are not shown due to space limitation.

We also compared the RLSI variants in terms of retrieval perfor-
mance. Specifically, for each of the RLSI variants, we combined
topic matching scores (stopic(q, d) in Eq. (5)) with term match-
ing scores given by conventional IR models of VSM or BM25.
Since BM25 performed better than VSM on AP and WSJ, and
VSM performed better than BM25 on OHSUMED, we combined
the topic matching scores with BM25 on AP and WSJ, and with
VSM on OHSUMED. The methods we tested were denoted as
“BM25+RLSI (Uℓ1-Vℓ2)”, “BM25+RLSI (Uℓ2-Vℓ1)”, “BM25+RLSI
(Uℓ1-Vℓ1)”, “BM25+RLSI (Uℓ2-Vℓ2)”, etc. Figures 3, 4, and 5
show the retrieval performance of RLSI variants achieved by the
best parameter setting on AP, WSJ, and OHSUMED, respectively.
From the results, we can see that 1) All of these methods can im-
prove over the baseline and in most cases the improvement is sta-
tistically significant (t-test, p-value < 0.05); 2) Among the RLSI
variants, RLSI (Uℓ1-Vℓ2) performs best and RLSI (Uℓ2-Vℓ2) per-
forms worst.

Table 7 summarizes the experimental results in terms of topic
readability, topic compactness, and retrieval performance. From
the result, we can see that in RLSI, ℓ1 norm regularization is essen-
tial for discovering readable topics, and the discovered topics will
also be compact if ℓ1 norm is imposed on U. Furthermore, between
the two RLSI variants with good topic readability and compact-
ness, i.e., RLSI (Uℓ1-Vℓ2) and RLSI (Uℓ1-Vℓ1), RLSI (Uℓ1-Vℓ2)
performs better in improving retrieval performance. Thus we con-
clude that it is a better practice to apply ℓ1 norm on U and ℓ2 norm
on V in RLSI, for achieving good topic readability, topic compact-
ness, and retrieval performance.

We will use RLSI (Uℓ1-Vℓ2) in the following experiments and
denote it as RLSI for simplicity.

6.3 Comparison of Topic Models
In this experiment, we compared RLSI with LDA, PLSI, and LSI

on AP, WSJ, and OHSUMED datasets.

0.39

0.41

0.43

0.45

0.47

0.49

BM25

BM25+RLSI (UL1-VL2)

BM25+RLSI (UL2-VL1)

BM25+RLSI (UL1-VL1)

BM25+RLSI (UL2-VL2)

0.35

0.37

0.39

0.41

0.43

0.45

0.47

0.49

MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

BM25

BM25+RLSI (UL1-VL2)

BM25+RLSI (UL2-VL1)

BM25+RLSI (UL1-VL1)

BM25+RLSI (UL2-VL2)

Figure 3: Retrieval performance of RLSI variants on AP.

0.32

0.34

0.36

0.38

0.4

0.42

BM25

BM25+RLSI (UL1-VL2)

BM25+RLSI (UL2-VL1)

BM25+RLSI (UL1-VL1)

BM25+RLSI (UL2-VL2)

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

BM25

BM25+RLSI (UL1-VL2)

BM25+RLSI (UL2-VL1)

BM25+RLSI (UL1-VL1)

BM25+RLSI (UL2-VL2)

Figure 4: Retrieval performance of RLSI variants on WSJ.

We first compared RLSI with LDA, PLSI, and LSI in terms of
topic readability, by looking at the topics they generated. We made
use of the tools available on Internet for creating the baselines4.
The number of topics K was again set to 20 for all the methods. In
RLSI, λ1 and λ2 were the optimal parameters used in Section 6.2
(i.e., λ1 = 0.5 and λ2 = 1.0). For LDA, PLSI, and LSI, there was
no additional parameter to tune.

Table 8 shows 10 randomly selected topics discovered by RLSI,
LDA, PLSI, and LSI and the average topic compactness (AvgComp)
on AP dataset. For each topic, its top 5 weighted terms are shown.
From the results, we have found 1) RLSI can discover readable and
compact (e.g., AvgComp = 0.0075) topics; 2) PLSI and LDA can
discover coherent and readable topics as expected, however the dis-
covered topics are not compact (e.g., AvgComp = 0.9534 and Avg-
Comp = 1, respectively); 3) LDA performs better than PLSI. There
is some redundancy in the topics discovered by PLSI; 4) The topics
discovered by LSI were hard to understand, and this may be due to
its orthogonality assumption. We also conducted the same experi-
ments on WSJ and OHSUMED and observed similar phenomena.
The results on them are not shown due to space limitation.

We also tested the performance of RLSI in terms of retrieval per-
formance, in comparison to LSI, PLSI, LDA. The experimental set-
tings was similar to that of used in Section 6.2. Parameters K and
α were respectively set in ranges of [10, 50] and [0.1, 1] for all four
methods, and parameters λ1 and λ2 in RLSI were respectively set in
ranges of [0.01, 1] and [0.01, 1]. Figures 6, 7, and 8 show retrieval
performance achieved by the best parameter setting on AP, WSJ,
and OHSUMED, respectively. From the results, we can see that
RLSI can significantly improve the baseline (t-test, p-value < 0.05),
going beyond the simple term matching paradigm. Among the dif-
ferent topic modeling methods, RLSI performs slightly better than

4LSI: http://tedlab.mit.edu/~dr/SVDLIBC/; PLSI:
http://www.lemurproject.org/; LDA: http://www.
cs.princeton.edu/~blei/lda-c/

Table 6: Topics discovered by RLSI variants from AP dataset.
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
opec africa aid school noriega percent plane israeli nuclear bush
oil south virus student panama billion crash palestinian soviet dukakis

RLSI (Uℓ1-Vℓ2) cent african infect teacher panamanian rate flight israel treaty campaign
AvgComp = 0.0075 barrel angola test educate delval 0 air arab missile quayle

price apartheid patient college canal trade airline plo weapon bentsen
nuclear court noriega africa cent israeli dukakis student plane percent
treaty judge panama south opec palestinian bush school crash billion

RLSI (Uℓ2-Vℓ1) missile prison panamanian african oil israel jackson teacher flight rate
AvgComp = 1 weapon trial delval angola barrel arab democrat educate air 0

soviet sentence canal apartheid price plo campaign college airline trade
court plane dukakis israeli africa soviet school yen cent noriega
prison crash bush palestinian south treaty student trade opec panama

RLSI (Uℓ1-Vℓ1) judge air jackson israel african missile teacher dollar oil panamanian
AvgComp = 0.0197 sentence flight democrat arab angola nuclear educate market barrel delval

trial airline campaign plo apartheid gorbachev college japan price canal
dukakis palestinian soviet school africa dukakis soviet drug percent soviet
oil israeli noriega student south bush treaty cent billion israeli

RLSI (Uℓ2-Vℓ2) opec israel panama bakker iran democrat student police price missile
AvgComp = 1 cent arab drug trade african air nuclear student trade israel

bush plo quake china dukakis jackson missile percent cent treaty

Table 8: Topics discovered by RLSI, LDA, PLSI, and LSI from AP dataset.
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
opec africa aid school noriega percent plane israeli nuclear bush
oil south virus student panama billion crash palestinian soviet dukakis

RLSI cent african infect teacher panamanian rate flight israel treaty campaign
AvgComp = 0.0075 barrel angola test educate delval 0 air arab missile quayle

price apartheid patient college canal trade airline plo weapon bentsen
soviet school dukakis party year water price court air iran
nuclear student democrat govern new year year charge plane iranian

LDA union year campaign minister time fish market case flight ship
AvgComp = 1 state educate bush elect television animal trade judge crash iraq

treaty university jackson nation film 0 percent attorney airline navy
company israeli year year bush court soviet year plane year
million iran state state dukakis charge treaty state flight state

PLSI share israel new new democrat attorney missile new airline new
AvgComp = 0.9534 billion palestinian nation nation campaign judge nuclear nation crash people

stock arab govern 0 republican trial gorbachev govern air nation
soviet 567 0 earthquake drug 0 israel yen urgent student
percent 234 yen quake school dukakis israeli dukakis oil school

LSI police 0 dollar richter test bush student bush opec noriega
AvgComp = 1 govern percent percent scale court jackson palestinian dollar dukakis panama

state 12 tokyo damage dukakis dem africa jackson cent teacher

0.41

0.43

0.45

0.47

0.49

0.51

0.53

0.55

VSM

VSM+RLSI (UL1-VL2)

VSM+RLSI (UL2-VL1)

VSM+RLSI (UL1-VL1)

VSM+RLSI (UL2-VL2)

0.35

0.37

0.39

0.41

0.43

0.45

0.47

0.49

0.51

0.53

0.55

MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

VSM

VSM+RLSI (UL1-VL2)

VSM+RLSI (UL2-VL1)

VSM+RLSI (UL1-VL1)

VSM+RLSI (UL2-VL2)

Figure 5: Retrieval performance of RLSI variants on OHSUMED.

the other methods, and sometimes the improvements are statisti-
cally significant (t-test, p-value < 0.05). We conclude that RLSI is
a proper choice for combining topic matching and term matching.

6.4 Experiment on Web Dataset

Table 7: Performance of the RLSI variants.
Readability Compactness Retrieval performance

RLSI (Uℓ1-Vℓ2)
√ √ √

RLSI (Uℓ2-Vℓ1)
√ × ×

RLSI (Uℓ1-Vℓ1)
√ √ ×

RLSI (Uℓ2-Vℓ2) × × ×

We tested the scalability of RLSI using a large real-world web
dataset. Table 9 lists the sizes of popular datasets used to evaluate
existing distributed/parallel topic models, as well as the size of our
Web dataset. We can see that the number of terms in Web dataset
is much larger (about 35 times of the number of terms in Wiki-
200T), which hinders the scaling up of existing parallel/distributed
topic models, as they need to keep the dense term-topic matrix in
memory on each processor. Distributed RLSI, on the other hand,
can distribute the terms and documents over processors and thus
can handle the Web dataset effectively and efficiently. (Note that it
is difficult for us to re-implement existing parallel topic modeling
methods, because most of them require special computing infras-

0.39

0.41

0.43

0.45

0.47

0.49

BM25

BM25+LSI

BM25+PLSI

BM25+LDA

BM25+RLSI

0.35

0.37

0.39

0.41

0.43

0.45

0.47

0.49

MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

BM25

BM25+LSI

BM25+PLSI

BM25+LDA

BM25+RLSI

Figure 6: Retrieval performance on AP.

0.31

0.33

0.35

0.37

0.39

0.41

0.43

BM25

BM25+LSI

BM25+PLSI

BM25+LDA

BM25+RLSI

0.25

0.27

0.29

0.31

0.33

0.35

0.37

0.39

0.41

0.43

MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

BM25

BM25+LSI

BM25+PLSI

BM25+LDA

BM25+RLSI

Figure 7: Retrieval performance on WSJ.

tructures and the development costs of the methods are high.)
In our experiments, the number of topics K was set to 500, λ1 and
λ2 were again set to 0.5 and 1.0 respectively. It took about 1.5 hours
for Distributed RLSI to complete an iteration on the MapReduce
system with 16 processors. Table 10 shows 10 randomly sampled
topics and the overall topic compactness on the Web dataset. We
can see that the topics obtained by RLSI are compact and readable.

Next, we tested retrieval performance of Distributed RLSI. We
randomly split the queries into training/validation/test sets, with
6000/2000/2680 queries, respectively. We took LambdaRank [5]
as the baseline. There are 16 features used in the LambdaRank
model, including BM25, PageRank, and Query-Exact-Match. In
our methods, the topic matching scores by RLSI were used as a new
feature in LambdaRank, denoted as “LambdaRank+RLSI”. Figure
9 shows the results on the test set, indicating that topics discovered
by RLSI allowed “LambdaRank+RLSI” to significantly (t-test, p-
value < 0.01) outperform the baseline method of LambdaRank.

Finally, since other papers reduced input vocabulary size, we
tested the effect of reducing the vocabulary size in RLSI. Specifi-
cally, we removed the terms whose total term frequency is less than
100 from the Web dataset obtaining a new dataset with 222,904
terms. We applied RLSI on the new dataset with parameters K =
500, λ1 = 0.5 and λ2 = 1.0. We then created a LambdaRank
model with topic matching scores as a feature, denoted as “Lamb-
daRank+RLSI (Reduced Vocabulary)”. Figure 9 shows the retrieval
performance of “LambdaRank+RLSI (Reduced Vocabulary)” on
the test set. The result indicates that reducing the vocabulary size
will sacrifice learning accuracy of RLSI and consequently hurt the
retrieval performance. We conducted t-tests on the differences be-
tween “LambdaRank+RLSI (Reduced Vocabulary)” and “Lamb-
daRank+RLSI” and found that the difference is statistically signif-
icant (p-value < 0.01). We observed the same trends on the TREC
datasets for RLSI and LDA, but we do not report the details due to
space limitation.

0.39

0.41

0.43

0.45

0.47

0.49

0.51

0.53

0.55

VSM

VSM+LSI

VSM+PLSI

VSM+LDA

VSM+RLSI

0.35

0.37

0.39

0.41

0.43

0.45

0.47

0.49

0.51

0.53

0.55

MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

VSM

VSM+LSI

VSM+PLSI

VSM+LDA

VSM+RLSI

Figure 8: Retrieval performance on OHSUMED.

Table 9: Size of datasets.
Dataset # docs # terms Applied algorithms
NIPS 1,500 12,419 Async-CVB, Async-CGS, PLDA
Wiki-200T 2,122,618 200,000 PLDA+
PubMed 8,200,000 141,043 AD-LDA, Async-CVB, Async-CGS
Web dataset 1,562,807 7,014,881 Distributed RLSI

7. CONCLUSIONS
In this paper, we have studied topic modeling from the view-

point of enhancing scalability and retrieval performance. We have
proposed a new method for topic modeling, called Regularized La-
tent Semantic Indexing (RLSI). RLSI formalizes topic modeling as
minimization of a quadratic loss function with a regularization (ei-
ther ℓ1 or ℓ2 norm). Although similar techniques have been used
in other fields, such as sparse coding in computer vision, this is the
first comprehensive study of regularization for topic modeling, as
far as we know. It is exactly the formulation of RLSI that makes
its optimization process decomposable, and thus scalable. Specifi-
cally, RLSI replaces the orthogonality constraint or probability dis-
tribution constraints with regularization. Therefore, RLSI can be
more easily implemented in a parallel and/or distributed comput-
ing environment, such as MapReduce. We presented a specific al-
gorithm for running RLSI on MapReduce.

In our experiments we tested different variants of RLSI and con-
firmed that the sparse topic regularization and smooth document
regularization is the best choice from the viewpoint of overall per-
formance. Specifically the ℓ1 norm on topics (making topics sparse)
and ℓ2 norm on document representations gave the best readability
and retrieval performance.

Experimental results on TREC data and large scale web data
show that RLSI is better than or comparable with existing meth-
ods such as LSI, PLSI, and LDA in terms of readability of topics
and accuracy in relevance ranking. We have also demonstrated that
RLSI can scale up to large document collection with 1.6 million
documents and 7 million terms, which is very difficult for exiting
methods. Most previous papers reduced the input vocabulary size
to tens of thousands of terms. As far as we know, this is the largest
size which the topic modeling methods can handle so far. We have
also verified that RLSI can help improve web search relevance.

As future work, we plan to further enhance the scale of experi-
ments to process even larger datasets. We also want to further study
the theoretical properties of RLSI and new applications of RLSI.

8. REFERENCES
[1] L. AlSumait, D. Barbara, and C. Domeniconi. On-line lda:

Adaptive topic models for mining text streams with
applications to topic detection and tracking. In ICDM, 2008.

Table 10: Topics discovered by RLSI from Web dataset (AvgComp = 0.0035).
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
casino mortgage wheel cheap login christian google obj spywar friend
poker loan rim flight password bible web pdf anti myspace
slot credit tire hotel username church yahoo endobj sun music
game estate truck student registration god host stream virus comment
vegas bank car travel email jesus domain xref adwar photo

0.25

0.35

0.45

0.55

MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

LambdaRank+RLSI

LambdaRank+RLSI

(Reduced Vocabulary)

LambdaRank

Figure 9: Retrieval performance on Web dataset.

[2] A. Asuncion, P. Smyth, and M. Welling. Asynchronous
distributed estimation of topic models for document analysis.
Statistical Methodology, 2011.

[3] D. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. JMLR, 3:993–1022, 2003.

[4] A. Buluc and J. R. Gilbert. Challenges and advances in
parallel sparse matrix-matrix multiplication. In ICPP, pages
503–510, 2008.

[5] C. J. Burges, R. Ragno, and Q. V. Le. Learning to rank with
nonsmooth cost functions. In NIPS 19, 2007.

[6] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. Scope: Easy and efficient parallel
processing of massive data sets. VLDB Endow.,
1:1265–1276, 2008.

[7] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic
decomposition by basis pursuit. SISC, 20:33–61, 1998.

[8] X. Chen, B. Bai, Y. Qi, Q. Lin, and J. Carbonell. Sparse
latent semantic analysis. In NIPS Workshop, 2010.

[9] J. Dean, S. Ghemawat, and G. Inc. Mapreduce: simplified
data processing on large clusters. In OSDI, 2004.

[10] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,
and R. Harshman. Indexing by latent semantic analysis. J
AM SOC INFORM SCI, 41:391–407, 1990.

[11] C. Ding, T. Li, and W. Peng. On the equivalence between
non-negative matrix factorization and probabilistic latent
semantic indexing semantic indexing. COMPUT STAT DATA
AN, 52:3913–3927, 2008.

[12] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least
angle regression. ANN STAT, 32:407–499, 2004.

[13] J. Friedman, T. Hastie, H. Hofling, and R. Tibshirani.
Pathwise coordinate optimization. ANN APPL STAT,
1:302–332, 2007.

[14] W. J. Fu. Penalized regressions: The bridge versus the lasso.
J COMPUT GRAPH STAT, 7:397–416, 1998.

[15] M. D. Hoffman, D. M. Blei, and F. Bach. Online learning for
latent dirichlet allocation. In NIPS, 2010.

[16] T. Hofmann. Probabilistic latent semantic indexing. In
SIGIR, pages 50–57, 1999.

[17] D. D. Lee and H. S. Seung. Learning the parts of objects

with nonnegative matrix factorization. Nature, 401:391–407,
1999.

[18] D. D. Lee and H. S. Seung. Algorithms for non-negative
matrix factorization. In NIPS 13, pages 556–562. 2001.

[19] H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse
coding algorithms. In NIPS, pages 801–808. 2007.

[20] C. Liu, H. chih Yang, J. Fan, L.-W. He, and Y.-M. Wang.
Distributed nonnegative matrix factorization for web-scale
dyadic data analysis on mapreduce. In WWW, pages
681–690, 2010.

[21] Z. Liu, Y. Zhang, and E. Y. Chang. Plda+: Parallel latent
dirichlet allocation with data placement and pipeline
processing. In TIST, 2010.

[22] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman.
Supervised dictionary learning. In NIPS 21, pages
1033–1040. 2009.

[23] D. M. Mimno and McCallum. Organizing the oca: Learning
faceted subjects from a library of digital books. In JCDL,
pages 376–385, 2007.

[24] D. Newman, A. Asuncion, P. Smyth, and M. Welling.
Distributed inference for latent dirichlet allocation. In NIPS,
2008.

[25] B. A. Olshausen and D. J. Fieldt. Sparse coding with an
overcomplete basis set: a strategy employed by v1. VISION
RES, 37:3311–3325, 1997.

[26] M. Osborne, B. Presnell, and B. Turlach. A new approach to
variable selection in least squares problems. IMA J NUMER
ANAL, 2000.

[27] S. E. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu,
and M. Gatford. Okapi at trec-3. In TREC’3, 1994.

[28] R. Rubinstein, M. Zibulevsky, and M. Elad. Double sparsity:
Learning sparse dictionaries for sparse signal approximation.
IEEE T SIGNAL PROCES, pages 1553–1564, 2008.

[29] G. Salton, A. Wong, and C. S. Yang. A vector space model
for automatic indexing. Commun. ACM, 18:613–620, 1975.

[30] A. P. Singh and G. J. Gordon. A unified view of matrix
factorization models. In ECMLPKDD, pages 358–373, 2008.

[31] A. Smola and S. Narayanamurthy. An architecture for
parallel topic models. Proc. VLDB Endow., 3:703–710, 2010.

[32] R. Thakur and R. Rabenseifner. Optimization of collective
communication operations in mpich. INT J HIGH
PERFORM C, 19:49–66, 2005.

[33] C. Wang and D. M. Blei. Decoupling sparsity and
smoothness in the discrete hierachical dirichlet process. In
NIPS, 2009.

[34] Y. Wang, H. Bai, M. Stanton, W. yen Chen, and E. Y. Chang.
Plda: Parallel latent dirichlet allocation for large-scale
applications. In AAIM, pages 301–314, 2009.

[35] X. Wei and B. W. Croft. Lda-based document models for
ad-hoc retrieval. In SIGIR, pages 178–185, 2006.

[36] F. Yan, N. Xu, and Y. A. Qi. Parallel inference for latent
dirichlet allocation on graphics processing units. In NIPS,
pages 2134–2142, 2009.

