
Learning Word Representations by Jointly Modeling
Syntagmatic and Paradigmatic Relations

Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu, and Xueqi Cheng
CAS Key Lab of Network Data Science and Technology

Institute of Computing Technology
Chinese Academy of Sciences, China

ofey.sunfei@gmail.com
{guojiafeng,lanyanyan,junxu,cxq}@ict.ac.cn

Abstract

Vector space representation of words has
been widely used to capture fine-grained
linguistic regularities, and proven to be
successful in various natural language pro-
cessing tasks in recent years. However,
existing models for learning word repre-
sentations focus on either syntagmatic or
paradigmatic relations alone. In this pa-
per, we argue that it is beneficial to jointly
modeling both relations so that we can not
only encode different types of linguistic
properties in a unified way, but also boost
the representation learning due to the mu-
tual enhancement between these two types
of relations. We propose two novel dis-
tributional models for word representation
using both syntagmatic and paradigmat-
ic relations via a joint training objective.
The proposed models are trained on a pub-
lic Wikipedia corpus, and the learned rep-
resentations are evaluated on word anal-
ogy and word similarity tasks. The re-
sults demonstrate that the proposed mod-
els can perform significantly better than al-
l the state-of-the-art baseline methods on
both tasks.

1 Introduction

Vector space models of language represent each
word with a real-valued vector that captures both
semantic and syntactic information of the word.
The representations can be used as basic features
in a variety of applications, such as information re-
trieval (Manning et al., 2008), named entity recog-
nition (Collobert et al., 2011), question answer-
ing (Tellex et al., 2003), disambiguation (Schütze,
1998), and parsing (Socher et al., 2011).

A common paradigm for acquiring such repre-
sentations is based on the distributional hypothe-
sis (Harris, 1954; Firth, 1957), which states that

iswolfThe a fierce animal.

istigerThe a fierce animal.

syntagmatic

syntagmatic

paradigmatic

Figure 1: Example for syntagmatic and paradig-
matic relations.

words occurring in similar contexts tend to have
similar meanings. Based on this hypothesis, vari-
ous models on learning word representations have
been proposed during the last two decades.

According to the leveraged distributional infor-
mation, existing models can be grouped into t-
wo categories (Sahlgren, 2008). The first cate-
gory mainly concerns the syntagmatic relations a-
mong the words, which relate the words that co-
occur in the same text region. For example, “wolf”
is close to “fierce” since they often co-occur in
a sentence, as shown in Figure 1. This type of
models learn the distributional representations of
words based on the text region that the words oc-
cur in, as exemplified by Latent Semantic Anal-
ysis (LSA) model (Deerwester et al., 1990) and
Non-negative Matrix Factorization (NMF) mod-
el (Lee and Seung, 1999). The second category
mainly captures paradigmatic relations, which re-
late words that occur with similar contexts but may
not co-occur in the text. For example, “wolf” is
close to “tiger” since they often have similar con-
text words. This type of models learn the word
representations based on the surrounding word-
s, as exemplified by the Hyperspace Analogue to
Language (HAL) model (Lund et al., 1995), Con-
tinuous Bag-of-Words (CBOW) model and Skip-
Gram (SG) model (Mikolov et al., 2013a).

In this work, we argue that it is important to



take both syntagmatic and paradigmatic relations
into account to build a good distributional mod-
el. Firstly, in distributional meaning acquisition,
it is expected that a good representation should
be able to encode a bunch of linguistic properties.
For example, it can put semantically related words
close (e.g., “microsoft” and “office”), and also be
able to capture syntactic regularities like “big is
to bigger as deep is to deeper”. Obviously, these
linguistic properties are related to both syntagmat-
ic and paradigmatic relations, and cannot be well
modeled by either alone. Secondly, syntagmat-
ic and paradigmatic relations are complimentary
rather than conflicted in representation learning.
That is relating the words that co-occur within
the same text region (e.g., “wolf” and “fierce” as
well as “tiger” and “fierce”) can better relate word-
s that occur with similar contexts (e.g., “wolf” and
“tiger”), and vice versa.

Based on the above analysis, we propose two
new distributional models for word representation
using both syntagmatic and paradigmatic relation-
s. Specifically, we learn the distributional repre-
sentations of words based on the text region (i.e.,
the document) that the words occur in as well as
the surrounding words (i.e., word sequences with-
in some window size). By combining these two
types of relations either in a parallel or a hierarchi-
cal way, we obtain two different joint training ob-
jectives for word representation learning. We eval-
uate our new models in two tasks, i.e., word anal-
ogy and word similarity. The experimental results
demonstrate that the proposed models can perform
significantly better than all of the state-of-the-art
baseline methods in both of the tasks.

2 Related Work

The distributional hypothesis has provided the
foundation for a class of statistical methods
for word representation learning. According to
the leveraged distributional information, existing
models can be grouped into two categories, i.e.,
syntagmatic models and paradigmatic models.

Syntagmatic models concern combinatorial re-
lations between words (i.e., syntagmatic relation-
s), which relate words that co-occur within the
same text region (e.g., sentence, paragraph or doc-
ument).

For example, sentences have been used as the
text region to acquire co-occurrence information
by (Rubenstein and Goodenough, 1965; Miller

and Charles, 1991). However, as pointed our by
Picard (1999), the smaller the context regions are
that we use to collect syntagmatic information,
the worse the sparse-data problem will be for the
resulting representation. Therefore, syntagmatic
models tend to favor the use of larger text regions
as context. Specifically, a document is often taken
as a natural context of a word following the liter-
ature of information retrieval. In these methods, a
words-by-documents co-occurrence matrix is built
to collect the distributional information, where the
entry indicates the (normalized) frequency of a
word in a document. A low-rank decomposition
is then conducted to learn the distributional word
representations. For example, LSA (Deerwester et
al., 1990) employs singular value decomposition
by assuming the decomposed matrices to be or-
thogonal. In (Lee and Seung, 1999), non-negative
matrix factorization is conducted over the words-
by-documents matrix to learn the word represen-
tations.

Paradigmatic models concern substitutional
relations between words (i.e., paradigmatic rela-
tions), which relate words that occur in the same
context but may not at the same time. Unlike
syntagmatic model, paradigmatic models typically
collect distributional information in a words-by-
words co-occurrence matrix, where entries indi-
cate how many times words occur together within
a context window of some size.

For example, the Hyperspace Analogue to Lan-
guage (HAL) model (Lund et al., 1995) construct-
ed a high-dimensional vector for words based on
the word co-occurrence matrix from a large cor-
pus of text. However, a major problem with HAL
is that the similarity measure will be dominat-
ed by the most frequent words due to its weight
scheme. Various methods have been proposed to
address the drawback of HAL. For example, the
Correlated Occurrence Analogue to Lexical Se-
mantic (COALS) (Rohde et al., 2006) transformed
the co-occurrence matrix by an entropy or corre-
lation based normalization. Bullinaria and Levy
(2007), and Levy and Goldberg (2014b) suggested
that positive pointwise mutual information (PPMI)
is a good transformation. More recently, Lebret
and Collobert (2014) obtained the word represen-
tations through a Hellinger PCA (HPCA) of the
words-by-words co-occurrence matrix. Penning-
ton et al. (2014) explicitly factorizes the words-by-
words co-occurrence matrix to obtain the Global



Vectors (GloVe) for word representation.
Alternatively, neural probabilistic language

models (NPLMs) (Bengio et al., 2003) learn word
representations by predicting the next word given
previously seen words. Unfortunately, the training
of NPLMs is quite time consuming, since comput-
ing probabilities in such model requires normal-
izing over the entire vocabulary. Recently, Mni-
h and Teh (2012) applied Noise Contrastive Es-
timation (NCE) to approximately maximize the
probability of the softmax in NPLM. Mikolov
et al. (2013a) further proposed continuous bag-
of-words (CBOW) and skip-gram (SG) models,
which use a simple single-layer architecture based
on inner product between two word vectors. Both
models can be learned efficiently via a simple vari-
ant of Noise Contrastive Estimation, i.e., Negative
sampling (NS) (Mikolov et al., 2013b).

3 Our Models

In this paper, we argue that it is important to joint-
ly model both syntagmatic and paradigmatic re-
lations to learn good word representations. In this
way, we not only encode different types of linguis-
tic properties in a unified way, but also boost the
representation learning due to the mutual enhance-
ment between these two types of relations.

We propose two joint models that learn the dis-
tributional representations of words based on both
the text region that the words occur in (i.e., syntag-
matic relations) and the surrounding words (i.e.,
paradigmatic relations). To model syntagmatic re-
lations, we follow the previous work (Deerwester
et al., 1990; Lee and Seung, 1999) to take docu-
ment as a nature text region of a word. To mod-
el paradigmatic relations, we are inspired by the
recent work from Mikolov et al. (Mikolov et al.,
2013a; Mikolov et al., 2013b), where simple mod-
els over word sequences are introduced for effi-
cient and effective word representation learning.

In the following, we introduce the notation-
s used in this paper, followed by detailed model
descriptions, ending with some discussions of the
proposed models.

3.1 Notation

Before presenting our models, we first list the no-
tations used in this paper. Let D={d1, . . . , dN}
denote a corpus of N documents over the
word vocabulary W . The contexts for word
wn
i ∈W (i.e. i-th word in document dn) are

sat
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Figure 2: The framework for PDC model. Four
words (“the”, “cat”, “on” and “the”) are used to
predict the center word (“sat”). Besides, the doc-
ument in which the word sequence occurs is also
used to predict the center word (“sat”).

the words surrounding it in an L-sized window
(cni−L, . . . , c

n
i−1, c

n
i+1, . . . , c

n
i+L) ∈ H , where cnj ∈

W, j∈{i−L, . . . , i−1, i+1, . . . , i+L}. Each doc-
ument d ∈ D, each word w ∈ W and each con-
text c ∈ W is associated with a vector ~d ∈ RK ,
~w ∈ RK and ~c ∈ RK , respectively, where K is
the embedding dimensionality. The entries in the
vectors are treated as parameters to be learned.

3.2 Parallel Document Context Model
The first proposed model architecture is shown in
Figure 2. In this model, a target word is predicted
by its surrounding context, as well as the docu-
ment it occurs in. The former prediction task cap-
tures the paradigmatic relations, since words with
similar context will tend to have similar represen-
tations. While the latter prediction task models the
syntagmatic relations, since words co-occur in the
same document will tend to have similar represen-
tations. More detailed analysis on this will be p-
resented in Section 3.4. The model can be viewed
as an extension of CBOW model (Mikolov et al.,
2013a), by adding an extra document branch. S-
ince both the context and document are parallel in
predicting the target word, we call this model the
Parallel Document Context (PDC) model.

More formally, the objective function of PDC
model is the log likelihood of all words

` =
N∑

n=1

∑
wn

i ∈dn

(
log p(wn

i |hni )+ log p(wn
i |dn)

)



where hni denotes the projection of wn
i ’s contexts,

defined as

hni = f(cni−L, . . . , c
n
i−1, c

n
i+1, . . . , c

n
i+L)

where f(·) can be sum, average, concatenate or
max pooling of context vectors1. In this paper, we
use average, as that of word2vec tool.

We use softmax function to define the probabil-
ities p(wn

i |hni ) and p(wn
i |dn) as follows:

p(wn
i |hni ) =

exp( ~wn
i · ~hni )∑

w∈W exp(~w · ~hni )
(1)

p(wn
i |dn) =

exp( ~wn
i · ~dn)∑

w∈W exp(~w · ~dn)
(2)

where ~hni denotes projected vector of wn
i ’s con-

texts.
To learn the model, we adopt the negative sam-

pling technique (Mikolov et al., 2013b) for effi-
cient learning since the original objective is in-
tractable for direct optimization. The negative
sampling actually defines an alternate training ob-
jective function as follows

`=
N∑

n=1

∑
wn

i ∈dn

(
log σ( ~wn

i · ~hni )+ log σ( ~wn
i · ~dn)

+ k · Ew′∼Pnw log σ( ~w′ · ~hni )

+ k · Ew′∼Pnw log σ( ~w′ · ~dn)
)

(3)

where σ(x) = 1/(1 + exp(−x)), k is the num-
ber of “negative” samples, w′ denotes the sampled
word, and Pnw denotes the distribution of negative
word samples. We use stochastic gradient descent
(SGD) for optimization, and the gradient is calcu-
lated via back-propagation algorithm.

3.3 Hierarchical Document Context Model
Since the above PDC model can be viewed as an
extension of CBOW model, it is natural to intro-
duce the same document-word prediction layer in-
to the SG model. This becomes our second mod-
el architecture as shown in Figure 3. Specifically,
the document is used to predict a target word, and
the target word is further used to predict its sur-
rounding context words. Since the prediction is
conducted in a hierarchical manner, we name this

1Note that the context window size L can be a function of
the target word wn

i . In this paper, we use the same strategy
as word2vec tools which uniformly samples from the set
{1, 2, · · · , L}.

. . .
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i

Figure 3: The framework for HDC model. The
document is used to predict the target word (“sat”).
Then, the word (“sat”) is used to predict the sur-
rounding words (“the”, “cat”, “on” and “the”).

model the Hierarchical Document Context (HDC)
model. Similar as the PDC model, the syntagmatic
relation in HDC is modeled by the document-word
prediction layer and the word-context prediction
layer models the paradigmatic relation.

Formally, the objective function of HDC model
is the log likelihood of all words:

`=
N∑

n=1

∑
wn

i ∈dn

( i+L∑
j=i−L
j 6=i

log p(cnj |wn
i )+ log p(wn

i |dn)
)

where p(wn
i |dn) is defined the same as in Equa-

tion (2), and p(cnj |wn
i ) is also defined by a softmax

function as follows:

p(cnj |wn
i ) =

exp(~cnj · ~wn
i )∑

c∈W exp(~c · ~wn
i )

Similarly, we adopt the negative sampling tech-
nique for learning, which defines the following
training objective function

` =
N∑

n=1

∑
wn

i ∈dn

( i+L∑
j=i−L
j 6=i

(
log σ(~cnj · ~wn

i )

+ k · Ec′∼Pnc log σ(
~c′ · ~wn

i )
)

+ log σ( ~wn
i · ~dn) + k·Ew′∼Pnw log σ(

~w′· ~dn)
)

where k is the number of the negative samples, c′

and w′ denotes the sampled context and word re-



spectively, and Pnc and Pnw denotes the distribu-
tion of negative context and word samples respec-
tively2. We also employ SGD for optimization,
and calculate the gradient via back-propagation al-
gorithm.

3.4 Discussions

In this section we first show how PDC and HDC
models capture the syntagmatic and paradigmatic
relations from the viewpoint of matrix factoriza-
tion. We then talk about the relationship of our
models with previous work.

As pointed out in (Sahlgren, 2008), to capture
syntagmatic relations, the implementational basis
is to collect text data in a words-by-documents co-
occurrence matrix in which the entry indicates the
(normalized) frequency of occurrence of a word
in a document (or, some other type of text region,
e.g., a sentence). While the implementational ba-
sis for paradigmatic relations is to collect text data
in a words-by-words co-occurrence matrix that is
populated by counting how many times words oc-
cur together within the context window. We now
take the proposed PDC model as an example to
show how it achieves these goals, and similar re-
sults can be shown for HDC model.

The objective function of PDC with negative
sampling in Equation (3) can be decomposed in-
to the following two parts:

`1=
∑
w∈W

∑
h∈H

(
#(w, h)· log σ(~w · ~h)

+k·#(h)·pnw(w)log σ(−~w·~h)
) (4)

`2=
∑
d∈D

∑
w∈W

(
#(w, d)· log σ(~w · ~d)

+k·|d|·pnw(w)log σ(−~w·~d)
) (5)

where #(·, ·) denotes the number of times the pair
(·, ·) appears in D, #(h)=

∑
w∈W #(w, h), |d|

denotes the length of document d, the objective
function `1 corresponds to the context-word pre-
diction task and `2 corresponds to the document-
word prediction task.

Following the idea introduced by (Levy and
Goldberg, 2014a), it is easy to show that the so-
lution of the objective function `1 follows that

~w · ~h = log(
#(w, h)

#(h) · pnw(w)
)− log k

2Pnc is not necessary to be the same as Pnw.

and the solution of the objective function `2 fol-
lows that

~w · ~d = log(
#(w, d)

|d| · pnw(w)
)− log k

It reveals that the PDC model with negative sam-
pling is actually factorizing both a words-by-
contexts co-occurrence matrix and a words-by-
documents co-occurrence matrix simultaneously.
In this way, we can see that the implementation-
al basis of the PDC model is consistent with that
of syntagmatic and paradigmatic models. In other
words, PDC can indeed capture both syntagmatic
and paradigmatic relations by processing the right
distributional information. Please notice that the
PDC model is not equivalent to direct combina-
tion of existing matrix factorization methods, due
to the fact that the matrix entries defined in PDC
model are more complicated than the simple co-
occurrence frequency (Lee and Seung, 1999).

When considering existing models, one may
connect our models to the Distributed Memory
model of Paragraph Vectors (PV-DM) and the Dis-
tributed Bag of Words version of Paragraph Vec-
tors (PV-DBOW) (Le and Mikolov, 2014). How-
ever, both of them are quite different from our
models. In PV-DM, the paragraph vector and con-
text vectors are averaged or concatenated to pre-
dict the next word. Therefore, the objective func-
tion of PV-DM can no longer decomposed as the
PDC model as shown in Equation (4) and (5).
In other words, although PV-DM leverages both
paragraph and context information, it is unclear
how these information is collected and used in
this model. As for PV-DBOW, it simply lever-
ages paragraph vector to predict words in the para-
graph. It is easy to show that it only uses the
words-by-documents co-occurrence matrix, and
thus only captures syntagmatic relations.

Another close work is the Global Context-
Aware Neural Language Model (GCANLM for
short) (Huang et al., 2012). The model defines
two scoring components that contribute to the fi-
nal score of a (word sequence, document) pair.
The architecture of GCANLM seems similar to
our PDC model, but exhibits lots of differences
as follows: (1) GCANLM employs neural net-
works as components while PDC resorts to simple
model structure without non-linear hidden layers;
(2) GCANLM uses weighted average of all word
vectors to represent the document, which turns
out to model words-by-words co-occurrence (i.e.,



Table 1: Corpora used in baseline models.
model corpus size
C&W Wikipedia 2007 + Reuters RCV1 0.85B
HPCA Wikipedia 2012 1.6B
GloVe Wikipedia 2014+ Gigaword5 6B
GCANLM, CBOW, SG

Wikipedia 2010 1B
PV-DBOW, PV-DM

paradigmatic relations) again rather than words-
by-documents co-occurrence (i.e., syntagmatic re-
lations); (3) GCANLM is a language model which
predicts the next word given the preceding word-
s, while PDC model leverages both preceding and
succeeding contexts for prediction.

4 Experiments

In this section, we first describe our experimental
settings including the corpus, hyper-parameter s-
elections, and baseline methods. Then we com-
pare our models with baseline methods on two
tasks, i.e., word analogy and word similarity. Af-
ter that, we conduct some case studies to show
that our model can better capture both syntagmat-
ic and paradigmatic relations and how it improves
the performances on semantic tasks.

4.1 Experimental Settings

We select Wikipedia, the largest online knowl-
edge base, to train our models. We adopt the
publicly available April 2010 dump3 (Shaoul and
Westbury, 2010), which is also used by (Huang et
al., 2012; Luong et al., 2013; Neelakantan et al.,
2014). The corpus in total has 3, 035, 070 articles
and about 1 billion tokens. In preprocessing, we
lowercase the corpus, remove pure digit words and
non-English characters4.

Following the practice in (Pennington et al.,
2014), we set context window size as 10 and use
10 negative samples. The noise distributions for
context and words are set as the same as used
in (Mikolov et al., 2013a), pnw(w) ∝ #(w)0.75.
We also adopt the same linear learning rate strate-
gy described in (Mikolov et al., 2013a), where the
initial learning rate of PDC model is 0.05, and HD-
C is 0.025. No additional regularization is used in
our models5.

3http://www.psych.ualberta.ca/∼westburylab/downloads/
westburylab.wikicorp.download.html

4We ignore the words less than 20 occurrences during
training.

5Codes avaiable at http://www.bigdatalab.ac.cn/benchma
rk/bm/bd?code=PDC, http://www.bigdatalab.ac.cn/benchma
rk/bm/bd?code=HDC.

We compare our models with various state-of-
the-art models including C&W (Collobert et al.,
2011), GCANLM (Huang et al., 2012), CBOW,
SG (Mikolov et al., 2013a), GloVe (Pennington et
al., 2014), PV-DM, PV-DBOW (Le and Mikolov,
2014) and HPCA (Lebret and Collobert, 2014).
For C&W, GCANLM6, GloVe and HPCA, we use
the word embeddings they provided. For CBOW
and SG model, we reimplement these two mod-
els since the original word2vec tool uses SGD
but cannot shuffle the data. Besides, we also im-
plement PV-DM and PV-DBOW models due to
(Le and Mikolov, 2014) has not released source
codes. We train these four models on the same
dataset with the same hyper-parameter settings as
our models for fair comparison. The statistics of
the corpora used in baseline models are shown in
Table 1. Moreover, since different papers report
different dimensionality, to be fair, we conduct e-
valuations on three dimensions (i.e., 50, 100, 300)
to cover the publicly available results7.

4.2 Word Analogy
The word analogy task is introduced by Mikolov et
al. (2013a) to quantitatively evaluate the linguistic
regularities between pairs of word representations.
The task consists of questions like “a is to b as c is
to ”, where is missing and must be guessed
from the entire vocabulary. To answer such ques-
tions, we need to find a word vector ~x, which is
the closest to ~b − ~a + ~c according to the cosine
similarity:

arg max
x∈W,x6=a
x 6=b, x 6=c

(~b+ ~c− ~a) · ~x

The question is judged as correctly answered only
if x is exactly the answer word in the evaluation
set. The evaluation metric for this task is the per-
centage of questions answered correctly.

The dataset contains 5 types of semantic analo-
gies and 9 types of syntactic analogies8. The se-
mantic analogy contains 8, 869 questions, typical-
ly about people and place like “Beijing is to China
as Paris is to France”, while the syntactic analogy
contains 10, 675 questions, mostly on forms of ad-
jectives or verb tense, such as “good is to better as
bad to worse”.

6Here, we use GCANLM’s single-prototype embedding.
7C&W and GCANLM only released the vectors with 50

dimensions, and HPCA released vectors with 50 and 100 di-
mensions.

8http://code.google.com/p/word2vec/source/browse/trunk
/questions-words.txt



Table 2: Results on the word analogy task. Un-
derlined scores are the best within groups of the
same dimensionality, while bold scores are the
best overall.
model size dim semantic syntactic total
C&W 0.85B 50 9.33 11.33 10.98
GCANLM 1B 50 2.6 10.7 7.34
HPCA 1.6B 50 3.36 9.89 7.2
GloVe 6B 50 48.46 45.24 46.22
CBOW 1B 50 54.38 49.64 52.01
SG 1B 50 53.73 46.12 49.04
PV-DBOW 1B 50 55.02 44.17 49.34
PV-DM 1B 50 45.08 43.22 44.25
PDC 1B 50 61.21 54.55 57.88
HDC 1B 50 57.8 49.74 53.41
HPCA 1.6B 100 4.16 15.73 10.79
GloVe 6B 100 65.34 61.51 63.11
CBOW 1B 100 70.73 63.01 66.87
SG 1B 100 67.66 59.72 63.45
PV-DBOW 1B 100 67.49 56.29 61.51
PV-DM 1B 100 57.72 58.81 58.45
PDC 1B 100 72.77 67.68 70.35
HDC 1B 100 69.57 63.75 66.67
GloVe 6B 300 77.44 67.75 71.7
CBOW 1B 300 76.2 68.44 72.39
SG 1B 300 78.9 65.72 71.88
PV-DBOW 1B 300 66.85 58.5 62.08
PV-DM 1B 300 56.88 68.35 63.39
PDC 1B 300 79.55 69.71 74.76
HDC 1B 300 79.67 67.1 73.13

Result Table 2 shows the results on word analo-
gy task. As we can see that CBOW, SG and GloVe
are much stronger baselines as compare with
C&W, GCANLM and HPCA. Even so, our PDC
model still performs significantly better than these
state-of-the-art methods (p-value < 0.01), espe-
cially with smaller vector dimensionality. More
interestingly, by only training on 1 billion word-
s, our models can outperform the GloVe model
which is trained on 6 billion words. The result-
s demonstrate that by modeling both syntagmat-
ic and paradigmatic relations, we can learn better
word representations capturing linguistic regulari-
ties.

Besides, CBOW, SG and PV-DBOW can be
viewed as sub-models of our proposed models, s-
ince they use either context (i.e., paradigmatic re-
lations) or document (i.e., syntagmatic relations)
alone to predict the target word. By comparing
with these sub-models, we can see that the PDC
and HDC models can perform significantly better
on both syntactic and semantic subtasks. It shows
that by jointly modeling the two relations, one can
boost the representation learning and better cap-
ture both semantic and syntactic regularities.

4.3 Word Similarity

Besides the word analogy task, we also evalu-
ate our models on three different word similari-
ty tasks, including WordSim-353 (Finkelstein et
al., 2002), Stanford’s Contextual Word Similari-
ties (SCWS) (Huang et al., 2012) and rare word
(RW) (Luong et al., 2013). These datasets contain
word paris together with human assigned similar-
ity scores. We compute the Spearman rank corre-
lation between similarity scores based on learned
word representations and the human judgements.
In all experiments, we removed the word pairs that
cannot be found in the vocabulary.

Results Figure 4 shows results on three differ-
ent word similarity datasets. First of all, our pro-
posed PDC model always achieves the best per-
formances on the three tasks. Besides, if we com-
pare the PDC and HDC models with their cor-
responding sub-models (i.e., CBOW and SG) re-
spectively, we can see performance gain by adding
syntagmatic information via document. This gain
becomes even larger for rare words with low di-
mensionality as shown on RW dataset. More-
over, on the SCWS dataset, our PDC model us-
ing the single-prototype representations under di-
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Figure 4: Spearman rank correlation on three datasets. Results are grouped by dimensionality.

Table 3: Target words and their 5 most similar
words under different representations. Words in
italic often co-occur with the target words, while
words in bold are substitutable to the target words.

feynman

CBOW
einstein, schwinger, bohm, bethe
relativity

SG
schwinger, quantum, bethe, einstein
semiclassical

PDC
geometrodynamics, bethe, semiclassical
schwinger, perturbative

HDC
schwinger, electrodynamics, bethe
semiclassical, quantum

PV-DBOW
physicists, spacetime, geometrodynamics
tachyons, einstein

moon
CBOW earth, moons, pluto, sun, nebula
SG earth, sun, mars, planet, aquarius
PDC sun, moons, lunar, heavens, earth
HDC earth, sun, mars, planet, heavens
PV-DBOW lunar, moons, celestial, sun, ecliptic

mensionality 50 can achieve a comparable result
(65.63) to the state-of-the-art GCANLM (65.7 as
the best performance reported in (Huang et al.,
2012)) which uses multi-prototype vectors9.

4.4 Case Study
Here we conduct some case studies to (1) gain
some intuition on how these two relations affec-
t the representation learning, and (2) analyze why
the joint model can perform better.

To show how syntagmatic and paradigmatic
relations affect the learned representations, we
present the 5 most similar words (by cosine simi-
larity with 50-dimensional vectors) to a given tar-

9Note, in Figure 4, the performance of GCANLM is com-
puted based on their released single-prototype vectors.

get word under the PDC and HDC models, as well
as three sub-models, i.e., CBOW, SG, and PV-
DBOW. The results are shown in table 3, where
words in italic are those often co-occurred with
the target word (i.e., syntagmatic relations), while
words in bold are whose substitutable to the target
word (i.e., paradigmatic relation).

Clearly, top words from CBOW and SG mod-
els are more under paradigmatic relations, while
those from PV-DBOW model are more under syn-
tagmatic relations, which is quite consistent with
the model design. By modeling both relations, the
top words from PDC and HDC models become
more diverse, i.e., more syntagmatic relations than
CBOW and SG models, and more paradigmatic re-
lations than PV-DBOW model. The results reveal
that the word representations learned by PDC and
HDC models are more balanced with respect to the
two relations as compared with sub-models.

The next question is why learning a joint model
can work better on previous tasks? We first take
one example from the word analogy task, which is
the question “big is to bigger as deep is to ” with
the correct answer as “deeper”. Our PDC mod-
el produce the right answer but the CBOW model
fails with the answer “shallower”. We thus embed-
ding the learned word vectors from the two models
into a 3-D space to illustrate and analyze the rea-
son.

As shown in Figure 5, we can see that by joint-
ly modeling two relations, PDC model not only
requires that “deep” to be close to “deeper” (in co-
sine similarity), but also requires that “deep” and
“deeper” to be close to “crevasses”. The additional
requirements further drag these three words closer
as compared with those from the CBOW model,
and this make our model outperform the CBOW
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Figure 5: The 3-D embedding of learned word
vectors of “deep”, “deeper” and “crevasses” under
CBOW and PDC models.

model on this question. As for the word similarity
tasks, we find that the word pairs are either syntag-
matic (e.g., “bank” and “money”) or paradigmatic
(e.g., “left” and “abandon”). It is, therefore, not
surprising to see that a more balanced representa-
tion can achieve much better performance than a
biased representation.

5 Conclusion

Existing work on word representations models ei-
ther syntagmatic or paradigmatic relations. In this
paper, we propose two novel distributional model-
s for word representation, using both syntagmat-
ic and paradigmatic relations via a joint training
objective. The experimental results on both word
analogy and word similarity tasks show that the
proposed joint models can learn much better word
representations than the state-of-the-art methods.

Several directions remain to be explored. In
this paper, the syntagmatic and paradigmatic rela-
tions are equivalently important in both PDC and
HDC models. An interesting question would then
be whether and how we can add different weights
for syntagmatic and paradigmatic relations. Be-
sides, we may also try to learn the multi-prototype
word representations for polysemous words based
on our proposed models.
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