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Introduction 
Background 

  -- In the big data era, large scale matrix factorization (MF) has received much 

attention, e.g. recommender system. 

  -- Stochastic gradient descent (SGD) is one of the most popular algorithm to 

solve matrix factorization problem.  

  -- State-of-the-art distributed stochastic gradient descent methods: distributed 

SGD (DSGD), asynchronous SGD (ASGD), and iterative parameter mixing 

(IPM, also known as PSGD). 
 

Motivation 

  -- IPM is elegant and easy to implement. 

  -- IPM outperforms DSGD and ASGD in many learning tasks such as 

learning conditional maximum entropy model and structured perceptron [1].  

  -- IPM was empirically shown to fails in matrix factorization [2]. Why the 

failure happens and how to get rid of it motivate this work. 
 

Contributions 

  -- Theoretical analysis of the failure of IPM on MF. 

  -- Proposal of the alternating mixing SGD algorithm (AM-SGD). 

  -- Theoretical  and empirical analysis of the proposed AM-SGD algorithm. 

Failure of IPM on MF 

MF formulation 
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IPM on MF 
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Failure Analysis 

  

 

 

 

 

 

 

 

 

 

 

 

 
 

AM-SGD 
Data and Parameter partition 

  -- V and W are partitioned into 𝑑 × 1 blocks 

  -- each node 𝑐𝑖 store 𝑉(𝑖),𝑊(𝑖) and the whole H, ∀𝑖 = 1,… , 𝑑 
 

Update 𝑾𝒕
(𝒊)

 with 𝑯𝒕 fixed on node 𝒄𝒊, in parallel (with p threads) 

 

 

 

 

 

 

 

 

 
 

Experimental Results 
Platform 

  -- an MPI cluster, consists of 16 servers, each equipped with a four-core 

2.30GHz AMD Opteron processor and 8GB RAM. 
 

Data Sets 

  -- Netfilx, Yahoo-music, and a much large Synthetic data set.  
  

Results on Yahoo-Music (rank K=100) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis 

  -- AM-SGD outperforms PSGD and DSGD[2].  

  -- AM-SGD shows much superior scalability compared to PSGD and DSGD.  

Conclusion 
Conclusions 

  -- We found that the failure of PSGD for MF coms from the coupling of W 

and H in the optimization. 

  -- We propose an alternating parameter mixing algorithm, namely AM-SGD. 

  -- We proved that AM-SGD outperforms state-of-the-art  SGD-based MF 

algorithms, i.e. PSGD and DSGD. 

  -- AM-SGD showed better scalability, thus is suitable for large-scale MF. 

Future work 

  -- Comparing the convergence rate between AM-SGD and PSGD to further 

proved the effectiveness of AM-SGD. 

  -- Experimental results on large synthetic data to study the scalability. 
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