

# **Group Sparse Topical Coding:** From Code to Topic



Lu Bai, Jiafeng Guo, Yanyan Lan, Xueqi Cheng Institute of Computing Technology, Chinese Academy of Sciences {bailu, guojiafeng}@software.ict.ac.cn, {lanyanyan, cxq}@ict.ac.cn

# **MOTIVATION**



## PTM(Probabilistic Topic Model)

- Document is modeled as a meaningful to dimensional point in the topic simplex Lack a mechanism to directly control the mechanism to directly control the ior sparsity of the inferred represence se the normalization constraint

#### NPM(Non-Probabilistic Model)

- Easy to achieve sparsity by using sparse constraint like lasso or other composite regula Lose the clear semantic explanation over the latent representations.

## Group Sparse Topical Coding(GSTC)

- Produce a meaningful representation of docum
- Control the sparsity of repres Model learning efficiently





# 2. BASIC IDEA

- The meaning of document is composed of the meanings of words.
- Restricting the topics of words in the document can impact the meanings of document implicitly.





Modeling the word count  $w_n$  in coding scheme

Codings of words is restricted by group lasso

Word count is generated from Poisson wer the document 's topic proportion from code

# 3. MODEL DETAIL

#### Graphic model of GSTC



## Generating process of a document

- For each topic  $k \in \{1, ..., K\}$ , sample a word code vector  $s_{\cdot k} \in \mathbb{R}^N \sim M\text{-Laplace}(\lambda)$
- For each observed word
  - For each topic  $k \in \{1, ..., K\}$ , sample a latent word count  $w_{nk} \sim \text{Poisson}(s_{nk}\beta_{kn})$
- Obtain the word count  $w_n = \sum_{k=1}^K w_{nk}$

## Object function

 $\min_{\Theta, \beta} \mathcal{L}(\Theta, \beta) = -\ln P(\Theta, \beta \mid D)$  $= \min_{\theta \mid \theta} \sum_{k} \sum_{l=1}^{M} \left[ \sum_{k=1}^{L} s_{d, qk} \beta_{kn} - w_{d, q} \ln(\sum_{k=1}^{L} s_{d, qk} \beta_{kn}) \right]$ 

s.t. 
$$\mathbf{s}_{d,n} \ge 0, \forall d, n \in \mathbf{I}_d, \sum_{n=1}^{N} \beta_{kn} = 1, \forall k$$

## Parameter estimation

- 1. Fix  $\beta$ , learn  $s_d$  for each document d.(block coordinate descent are used for group sparsity)
- 2. Fix s, learn β with projected gradient method
- 3. Go to step 1 until converge

## From coding to topics

Let  $\theta$  be the topic proportion vector of document d, then  $\theta_k$  can be obtained by(formula 2 is derived by the Moran's Property ):

$$\theta_{k} = \mathbb{E}\left[\frac{\sum_{n=1}^{|I|} W_{nk}}{\sum_{n=1}^{|I|} \sum_{k=1}^{K} W_{nk}}\right] = \frac{\mathbb{E}\left[\sum_{n=1}^{|I|} W_{nk}\right] \sum_{n=1}^{|I|} \sum_{k=1}^{K} W_{nk}}{\sum_{n=1}^{|I|} W_{n}} = \frac{\sum_{n=1}^{|I|} S_{nk} \beta_{kn}}{\sum_{n=1}^{|I|} \sum_{k=1}^{K} S_{nk} \beta_{kn}}$$
(1)

$$\mathbb{E}\left[\sum_{n=1}^{|I|} w_{nk}\right] \sum_{n=1}^{|E|} \sum_{k=1}^{|E|} w_{nk} = \left(\sum_{n=1}^{|I|} w_{n}\right) \left(\sum_{n=1}^{|I|} \sum_{k=1}^{|I|} \sum_{nk} \beta_{kn} \beta_{kn}\right)$$

$$\left[\sum_{n=1}^{|I|} \sum_{n=1}^{|I|} \sum_{nk} \beta_{nk} \beta_{kn}\right]$$
(2)

### Moran's Property of Poisson Distribution

Let  $x_1, ..., x_n$  are independent Poisson random variables with parameters  $\tau_1, ..., \tau_n$ , then

$$|x_i| \sum_{j=1}^n x_j \sim Binom \left( \sum_{j=1}^n x_j, \frac{\tau_i}{\sum_{j=1}^n \tau_j} \right)$$

## 4. EXPERIMENTAL RESULTS

#### Dataset

- 20-newsgoup
  - 18, 846 document,
  - · 26, 214 distinct words
  - · 20 related categories
- · Baseline methods - LDA, NMF, STC
- Evaluation
  - Topic sparsity
  - Train time
  - Accuracy of document classification



# 5. CONCLUSIONS

# Conclusion

- · GSTC provides an elegant way to model topics concerning both sparsity and semantic representation.
- · Experiments show the good performance of GSTC in meaningful compact latent representations and document classification.

## Future work

- · Consider the sparsity of dictionary.
- · Develop a paralleled algorithm for large-scale applications.
- · Extend the GSTC by integrating the discriminative features of document.